ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a hard X-ray spectrum of unprecedented quality of the Galactic supernova remnant W49B obtained with the Suzaku satellite. The spectrum exhibits an unusual structure consisting of a saw-edged bump above 8 keV. This bump cannot be explained by any combination of high-temperature plasmas in ionization equilibrium. We firmly conclude that this bump is caused by the strong radiative recombination continuum (RRC) of iron, detected for the first time in a supernova remnant. The electron temperature derived from the bremsstrahlung continuum shape and the slope of the RRC is 1.5 keV. On the other hand, the ionization temperature derived from the observed intensity ratios between the RRC and K-alpha lines of iron is 2.7 keV. These results indicate that the plasma is in a highly overionized state. Volume emission measures independently determined from the fluxes of the thermal and RRC components are consistent with each other, suggesting the same origin of these components.
The X-ray Imaging Spectrometer (XIS) on board the Suzaku satellite is an X-ray CCD camera system that has superior performance such as a low background, high quantum efficiency, and good energy resolution in the 0.2-12 keV band. Because of the radiat ion damage in orbit, however, the charge transfer inefficiency (CTI) has increased, and hence the energy scale and resolution of the XIS has been degraded since the launch of July 2005. The CCD has a charge injection structure, and the CTI of each column and the pulse-height dependence of the CTI are precisely measured by a checker flag charge injection (CFCI) technique. Our precise CTI correction improved the energy resolution from 230 eV to 190 eV at 5.9 keV in December 2006. This paper reports the CTI measurements with the CFCI experiments in orbit. Using the CFCI results, we have implemented the time-dependent energy scale and resolution to the Suzaku calibration database.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا