ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - M. Min , C.P. Dullemond , M. Kama 2010
The precise location of the water ice condensation front (snow line) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conduci ve to planet formation, and from the higher stickiness in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU. However, in its first 5 to 10 million years, the solar nebula was optically thick, implying a smaller snow line radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1+1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. We derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.
In order to deduce properties of dust in astrophysical environments where dust growth through aggregation is important, knowledge of the way aggregated particles interact with radiation, and what information is encoded in the thermal radiation they e mit, is needed. The emission characteristics are determined by the size and structure of the aggregate and the composition and shape of the constituents. We thus aim at performing computations of compositionally inhomogeneous aggregates composed of irregularly shaped constituents. In addition we aim at developing an empirical recipe to compute the optical properties of such aggregates in a fast and accurate manner. We performed CDA computations for aggregates of irregularly shaped particles with various compositions. The constituents of the aggregate are assumed to be in the Rayleigh regime, and in addition we assume that the dominant interaction of the aggregate constituents is through dipole-dipole interactions. We computed the spectral structure of the emission efficiency in the 10 micron region for aggregates with 30% amorphous carbon and 70% silicates by volume with various fractions of crystalline and amorphous components. We find that the spectral appearance of the various components of the aggregate are very different and depend on their abundances. Most notably, materials that have a very low abundance appear spectroscopically as if they were in very small grains, while more abundant materials appear, spectroscopically to reside in larger grains. We construct a fast empirical approximate method, based on the idea of an effective medium approximation, to construct the spectra for these aggregates which almost perfectly reproduces the more exact computations. This new method is fast enough to be easily implemented in fitting procedures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا