ترغب بنشر مسار تعليمي؟ اضغط هنا

Modified gravitational wave (GW) propagation is a generic phenomenon in modified gravity. It affects the reconstruction of the redshift of coalescing binaries from the luminosity distance measured by GW detectors, and therefore the reconstruction of the actual masses of the component compact stars from the observed (`detector-frame) masses. We show that, thanks to the narrowness of the mass distribution of binary neutron stars, this effect can provide a clear signature of modified gravity, particularly for the redshifts explored by third generation GW detectors such as Einstein Telescope and Cosmic Explorer.
It has been recently shown that quadruply lensed gravitational-wave (GW) events due to coalescing binaries can be localized to one or just a few galaxies, even in the absence of an electromagnetic counterpart. We discuss how this can be used to extra ct information on modified GW propagation, which is a crucial signature of modifications of gravity at cosmological scales. We show that, using quadruply lensed systems, it is possible to constrain the parameter $Xi_0$ that characterizes modified GW propagation, without the need of imposing a prior on $H_0$. A LIGO/Virgo/Kagra network at target sensitivity might already get a significant measurement of $Xi_0$, while a third generation GW detector such as the Einstein Telescope could reach a very interesting accuracy.
We present a detailed study of the methodology for correlating `dark sirens (compact binaries coalescences without electromagnetic counterpart) with galaxy catalogs. We propose several improvements on the current state of the art, and we apply them t o the GWTC-2 catalog of LIGO/Virgo gravitational wave (GW) detections, and the GLADE galaxy catalog, performing a detailed study of several sources of systematic errors that, with the expected increase in statistics, will eventually become the dominant limitation. We provide a measurement of $H_0$ from dark sirens alone, finding as the best result $H_0=67.3^{+27.6}_{-17.9},,{rm km}, {rm s}^{-1}, {rm Mpc}^{-1}$ ($68%$ c.l.) which is, currently, the most stringent constraint obtained using only dark sirens. Combining dark sirens with the counterpart for GW170817 we find $H_0= 72.2^{+13.9}_{-7.5} ,{rm km}, {rm s}^{-1}, {rm Mpc}^{-1}$. We also study modified GW propagation, which is a smoking gun of dark energy and modifications of gravity at cosmological scales, and we show that current observations of dark sirens already start to provide interesting limits. From dark sirens alone, our best result for the parameter $Xi_0$ that measures deviations from GR (with $Xi_0=1$ in GR) is $Xi_0=2.1^{+3.2}_{-1.2}$. We finally discuss limits on modified GW propagation under the tentative identification of the flare ZTF19abanrhr as the electromagnetic counterpart of the binary black hole coalescence GW190521, in which case our most stringent result is $Xi_0=1.8^{+0.9}_{-0.6}$. We release the publicly available code $tt{DarkSirensStat}$, which is available under open source license at url{https://github.com/CosmoStatGW/DarkSirensStat}.
We provide a systematic and updated discussion of a research line carried out by our group over the last few years, in which gravity is modified at cosmological distances by the introduction of nonlocal terms, assumed to emerge at an effective level from the infrared behavior of the quantum theory. The requirement of producing a viable cosmology turns out to be very stringent and basically selects a unique model, in which the nonlocal term describes an effective mass for the conformal mode. We discuss how such a specific structure could emerge from a fundamental local theory of gravity, and we perform a detailed comparison of this model with the most recent cosmological datasets, confirming that it fits current data at the same level as $Lambda$CDM. Most notably, the model has striking predictions in the sector of tensor perturbations, leading to a very large effect in the propagation of gravitational wave (GWs) over cosmological distances. At the redshifts relevant for the next generation of GW detectors such as Einstein Telescope, Cosmic Explorer and LISA, this leads to deviations from GR that could be as large as $80%$, and could be verified with the detection of just a single coalescing binary with electromagnetic counterpart. This would also have potentially important consequences for the search of the counterpart since, for a given luminosity distance to the source, as inferred through the GW signal, the actual source redshift could be significantly different from that predicted by $Lambda$CDM. At the redshifts relevant for advanced LIGO/Virgo/Kagra the effect is smaller, but still potentially observable over a few years of runs at target sensitivity.
The Einstein Telescope (ET), a proposed European ground-based gravitational-wave detector of third-generation, is an evolution of second-generation detectors such as Advanced LIGO, Advanced Virgo, and KAGRA which could be operating in the mid 2030s. ET will explore the universe with gravitational waves up to cosmological distances. We discuss its main scientific objectives and its potential for discoveries in astrophysics, cosmology and fundamental physics.
Recent work has shown that modified gravitational wave (GW) propagation can be a powerful probe of dark energy and modified gravity, specific to GW observations. We use the technique of Gaussian processes, that allows the reconstruction of a function from the data without assuming any parametrization, to measurements of the GW luminosity distance from simulated joint GW-GRB detections, combined with measurements of the electromagnetic luminosity distance by simulated DES data. For the GW events we consider both a second-generation LIGO/Virgo/Kagra (HVLKI) network, and a third-generation detector such as the Einstein Telescope. We find that the HVLKI network at target sensitivity, with $O(15)$ neutron star binaries with electromagnetic counterpart, could already detect deviations from GR at a level predicted by some modified gravity models, and a third-generation detector such as ET would have a remarkable discovery potential. We discuss the complementarity of the Gaussian processes technique to the $(Xi_0,n)$ parametrization of modified GW propagation.
We discuss a modified gravity model which fits cosmological observations at a level statistically indistinguishable from $Lambda$CDM and at the same time predicts very large deviations from General Relativity (GR) in the propagation of gravitational waves (GWs) across cosmological distances. The model is a variant of the RT nonlocal model proposed and developed by our group, with initial conditions set during inflation, and predicts a GW luminosity distance that, at the redshifts accessible to LISA or to a third-generation GW detector such as the Einstein Telescope (ET), can differ from that in GR by as much as $60%$. An effect of this size could be detected with just a single standard siren with counterpart by LISA or ET. At the redshifts accessible to a LIGO/Virgo/Kagra network at target sensitivity the effect is smaller but still potentially detectable. Indeed, for the recently announced LIGO/Virgo NS-BH candidate S190814bv, the RT model predicts that, given the measured GW luminosity distance, the actual luminosity distance, and the redshift of an electromagnetic counterpart, would be smaller by as much as $7%$ with respect to the value inferred from $Lambda$CDM.
Gravitational-wave (GW) detectors can contribute to the measurement of cosmological parameters and to testing the dark-energy sector of alternatives to $Lambda$CDM, by using standard sirens. In this paper we focus on binary neutron stars with a count erpart detected through a gamma-ray burst (GRB), both at a second-generation network made by advanced LIGO+advanced Virgo+LIGO India+Kagra, and at third-generation (3G) detectors, discussing in particular the cases of a single Einstein Telescope (ET), and of a network of ET plus two Cosmic Explorer (CE). We construct mock catalogs of standard sirens, using different scenarios for the local merger rate and for the detection of the electromagnetic counterpart. For 3G detectors we estimate the coincidences with a GRB detector with the characteristics of the proposed THESEUS mission. We discuss how these standard sirens with a GRB counterpart can improve the determination of cosmological parameters (and particularly of $H_0$) in $Lambda$CDM, and we then study how to extract information on dark energy, considering both a non-trivial dark energy equation of state and modified GW propagation. We find that a 2G detector network can already reach, over several years of data taking, an interesting sensitivity to modified GW propagation, while a single ET detector would have a remarkable potential for discovery. We also find that, to fully exploit the potential of a ET+CE+CE network, it is necessary a much stronger program of search for electromagnetic counterparts (or else to resort to statistical methods for standard sirens), and furthermore gravitational lensing can become a limiting factor.
We study the impact of the limit on $|dot{G}|/G$ from Lunar Laser Ranging on nonlocal gravity, i.e. on models of the quantum effective action of gravity that include nonlocal terms relevant in the infrared, such as the RR and RT models proposed by ou r group, and the Deser-Woodard (DW) model. We elaborate on the analysis of Barreira et al. [1] and we confirm their findings that (under plausible assumptions such as the absence of strong backreaction from non-linear structures), the RR model is ruled out. We also show that the mechanism of perfect screening for free suggested for the DW model actually does not work and the DW model is also ruled out. In contrast, the RT model passes all phenomenological consistency tests and is still a viable candidate.
Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically als o predict deviations from general relativity in the propagation of GWs across cosmological distances, even in theories where the speed of gravity is equal to $c$. We find that, in generic modified gravity models, the effect of modified GW propagation dominates over that of $w_{rm DE}(z)$, making modified GW propagation a crucial observable for dark energy studies with standard sirens. We present a convenient parametrization of the effect in terms of two parameters $(Xi_0,n)$, analogue to the $(w_0,w_a)$ parametrization of the dark energy equation of state, and we give a limit from the LIGO/Virgo measurement of $H_0$ with the neutron star binary GW170817. We then perform a Markov Chain Monte Carlo analysis to estimate the sensitivity of the Einstein Telescope (ET) to the cosmological parameters, including $(Xi_0,n)$, both using only standard sirens, and combining them with other cosmological datasets. In particular, the Hubble parameter can be measured with an accuracy better than $1%$ already using only standard sirens while, when combining ET with current CMB+BAO+SNe data, $Xi_0$ can be measured to $0.8%$ . We discuss the predictions for modified GW propagation of a specific nonlocal modification of gravity, recently developed by our group, and we show that they are within the reach of ET. Modified GW propagation also affects the GW transfer function, and therefore the tensor contribution to the ISW effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا