ترغب بنشر مسار تعليمي؟ اضغط هنا

It is well known that jointly measurable observables cannot lead to a violation of any Bell inequality - independent of the state and the measurements chosen at the other site. In this letter we prove the converse: every pair of incompatible quantum observables enables the violation of a Bell inequality and therefore must remain incompatible within any other no-signaling theory. While in the case of von Neumann measurements it is sufficient to use the same pair of observables at both sites, general measurements can require different choices. The main result is obtained by showing that for arbitrary dimension the CHSH inequality provides the Lagrangian dual of the characterization of joint measurability. This leads to a simple criterion for joint measurability beyond the known qubit case.
We investigate what a snapshot of a quantum evolution - a quantum channel reflecting open system dynamics - reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of `Markovianity is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations.
The holographic principle states that on a fundamental level the information content of a region should depend on its surface area rather than on its volume. This counterintuitive idea which has its roots in the nonextensive nature of black-hole entr opy serves as a guiding principle in the search for the fundamental laws of Planck-scale physics. In this paper we show that a similar phenomenon emerges from the established laws of classical and quantum physics: the information contained in part of a system in thermal equilibrium obeys an area law. While the maximal information per unit area depends classically only on the number of microscopic degrees of freedom, it may diverge as the inverse temperature in quantum systems. A rigorous relation between area laws and correlations is established and their explicit behavior is revealed for a large class of quantum many-body states beyond equilibrium systems.
We show that the existence of string order in a given quantum state is intimately related to the presence of a local symmetry by proving that both concepts are equivalent within the framework of finitely correlated states. Once this connection is est ablished, we provide a complete characterization of local symmetries in these states. The results allow to understand in a straightforward way many of the properties of string order parameters, like their robustness/fragility under perturbations and their typical disappearance beyond strictly one-dimensional lattices. We propose and discuss an alternative definition, ideally suited for detecting phase transitions, and generalizations to two and more spatial dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا