ترغب بنشر مسار تعليمي؟ اضغط هنا

121 - M. Hahn , A. Becker , D. Bernhardt 2015
We have measured electron impact ionization (EII) for Fe 7+ from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurement to remove most metast ables, resulting in a beam of 94% ground state ions. Comparing with the previously recommended atomic data, we find that the Arnaud & Raymond (1992) cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400~eV. The cross section of Dere (2007) agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between measurement and the most recent theory are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.
We report measurements of electron impact ionization (EII) for Fe^13+, Fe^16+, and Fe^17+ over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently lo ng time that essentially all the ions had relaxed radiatively to their ground state before data were collected. For single ionization of $fethirteen$ we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud & Raymond (1992) is more than 30% larger, while that of Dere (2007) is about 20% greater. Much of the discrepancy with Dere (2007) is due to the theory overestimating the contribution of excitation-autoionization via n=2 excitations. Double ionization of Fe^13+ is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe^16+ and Fe^17+ agree with theoretical calculations to within the experimental uncertainties.
We present a measurement of the energy carried and dissipated by Alfven waves in a polar coronal hole. Alfven waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decr ease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity v_nt and the ion temperature T_i. We have implemented a means to separate the T_i and v_nt contributions using the observation that at low heights the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to v_nt. We find the initial energy flux density present was 6.7 +/- 0.7 x 10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and acccelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find that about 85% of this energy is dissipated below 1.5 R_sun, sufficiently low that thermal conduction can transport the energy throughout the coronal hole, heating it and driving the fast solar wind. The remaining energy is roughly consistent with what models show is needed to provide the extended heating above the sonic point for the fast solar wind. We have also studied T_i, which we found to be in the range of 1 - 2 MK, depending on the ion species.
We report ionization cross section measurements for electron impact single ionization (EISI) of Fe^11+$ forming Fe^12+ and electron impact double ionization (EIDI) of Fe^11+ forming Fe^13+. The measurements cover the center-of-mass energy range from approximately 230 eV to 2300 eV. The experiment was performed using the heavy ion storage ring TSR located at the Max-Planck-Institut fur Kernphysik in Heidelberg, Germany. The storage ring approach allows nearly all metastable levels to relax to the ground state before data collection begins. We find that the cross section for single ionization is 30% smaller than was previously measured in a single pass experiment using an ion beam with an unknown metastable fraction. We also find some significant differences between our experimental cross section for single ionization and recent distorted wave (DW) calculations. The DW Maxwellian EISI rate coefficient for Fe^11+ forming Fe^12+ may be underestimated by as much as 25% at temperatures for which Fe^11+ is abundant in collisional ionization equilibrium. This is likely due to the absence of 3s excitation-autoionization (EA) in the calculations. However, a precise measurement of the cross section due to this EA channel was not possible because this process is not distinguishable experimentally from electron impact excitation of an n=3 electron to levels of n > 44 followed by field ionization in the charge state analyzer after the interaction region. Our experimental results also indicate that the double ionization cross section is dominated by the indirect process in which direct single ionization of an inner shell 2l electron is followed by autoionization resulting in a net double ionization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا