ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision eclipse spectrophotometry of transiting terrestrial exoplanets represents a promising path for the first atmospheric characterizations of habitable worlds and the search for life outside our solar system. The detection of terrestrial p lanets transiting nearby late-type M-dwarfs could make this approach applicable within the next decade, with soon-to-come general facilities. In this context, we previously identified GJ 1214 as a high-priority target for a transit search, as the transit probability of a habitable planet orbiting this nearby M4.5 dwarf would be significantly enhanced by the transiting nature of GJ 1214 b, the super-Earth already known to orbit the star. Based on this observation, we have set up an ambitious high-precision photometric monitoring of GJ 1214 with the Spitzer Space Telescope to probe the inner part of its habitable zone in search of a transiting planet as small as Mars. We present here the results of this transit search. Unfortunately, we did not detect any other transiting planets. Assuming that GJ 1214 hosts a habitable planet larger than Mars that has an orbital period smaller than 20.9 days, our global analysis of the whole Spitzer dataset leads to an a posteriori no-transit probability of ~ 98%. Our analysis allows us to significantly improve the characterization of GJ 1214 b, to measure its occultation depth to be 70+-35 ppm at 4.5 microns, and to constrain it to be smaller than 205ppm (3-sigma upper limit) at 3.6 microns. In agreement with the many transmission measurements published so far for GJ 1214 b, these emission measurements are consistent with both a metal-rich and a cloudy hydrogen-rich atmosphere.
59 - M. Gillon 2013
We present the results of an intense photometric monitoring in the near-infrared (~0.9 microns) with the TRAPPIST robotic telescope of the newly discovered binary brown dwarf WISE J104915.57-531906.1, the third closest system to the Sun at a distance of only 2 pc. Our twelve nights of photometric time-series reveal a quasi-periodic (P = 4.87+-0.01 h) variability with a maximal peak-peak amplitude of ~11% and strong night-to-night evolution. We attribute this variability to the rotational modulation of fast-evolving weather patterns in the atmosphere of the coolest component (~T1-type) of the binary, in agreement with the cloud fragmentation mechanism proposed to drive the spectroscopic morphologies of brown dwarfs at the L/T transition. No periodic signal is detected for the hottest component (~L8-type). For both brown dwarfs, our data allow us to firmly discard any unique transit during our observations for planets >= 2 Rearth. For orbital periods smaller than ~9.5 h, transiting planets are excluded down to an Earth-size.
We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve signi ficantly the parameters of the system. Notably, the largely improved precision on the stellar density (2.41+-0.08 rho_sun) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717+-0.025 M_sun and 0.667+-0.011 R_sun. Our deduced physical parameters for the planet are 2.034+-0.052 M_jup and 1.036+-0.019 R_jup. Taking into account its level of irradiation, the high density of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035(-0.0025,+0.0060), is consistent with a fully circularized orbit. We detect the emission of the planet at 2.09 microns at better than 11-sigma, the deduced occultation depth being 1560+-140 ppm. Our detection of the occultation at 1.19 microns is marginal (790+-320 ppm) and more observations are needed to confirm it. We place a 3-sigma upper limit of 850 ppm on the depth of the occultation at ~0.9 microns. Together, these results strongly favor a poor redistribution of the heat to the night-side of the planet, and marginally favor a model with no day-side temperature inversion.
110 - M. Gillon 2011
We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 microns. An individual analysis of these new data leads to a planet radius of 2.21-0.16+0.15 Rearth, in good agreement with the values previously derived from the MOST and Spitzer transit discovery data. A global analysis of both Spitzer transit time-series improves the precision on the radius of the planet at 4.5 microns to 2.20+-0.12 Rearth. We also performed an independent analysis of the MOST data, paying particular attention to the influence of the systematic effects of instrumental origin on the derived parameters and errors by including them in a global model instead of performing a preliminary detrending-filtering processing. We deduce an optical planet radius of 2.04+0.15 Rearth from this reanalysis of MOST data, which is consistent with the previous MOST result and with our Spitzer infrared radius. Assuming the achromaticity of the transit depth, we performed a global analysis combining Spitzer and MOST data that results in a planet radius of 2.17+-0.10 Rearth (13,820+-620 km). These results point to 55 Cnc e having a gaseous envelope overlying a rocky nucleus, in agreement with previous works. A plausible composition for the envelope is water which would be in super-critical form given the equilibrium temperature of the planet.
251 - M. Gillon , A. P. Doyle , M. Lendl 2011
We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295+-0.0009 AU) around a moderately bright (V=11.6, K=10) G9 dwarf (0.89+-0.08 M_sun, 0.84+-0.03 R_sun) in the Southern constellation Eridanus. Thanks to high-p recision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50b, are well constrained to 1.47+-0.09 M_jup and 1.15+-0.05 R_jup, respectively. The transit ephemeris is 2455558.6120 (+-0.0002) + N x 1.955096 (+-0.000005) HJD_UTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R_HK = -4.67) and rotational period (P_rot = 16.3+-0.5 days) of the host star suggest an age of 0.8+-0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (rho_star = 1.48+-0.10 rho_sun, Teff = 5400+-100 K, [Fe/H]= -0.12+-0.08) which favours an age of 7+-3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity (Pont 2009; Hartman 2010). We measure a stellar inclination of 84 (-31,+6) deg, disfavouring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters atmospheric thermal profiles and the chromospheric activity of their host stars proposed by Knutson et al. (2010).
96 - M. Gillon 2011
We present here a new robotic telescope called TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope). Equipped with a high-quality CCD camera mounted on a 0.6 meter light weight optical tube, TRAPPIST has been installed in April 2010 at the ESO La Silla Observatory (Chile), and is now beginning its scientific program. The science goal of TRAPPIST is the study of planetary systems through two approaches: the detection and study of exoplanets, and the study of comets. We describe here the objectives of the project, the hardware, and we present some of the first results obtained during the commissioning phase.
We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V=15.5 solar analog star (M_* = 1.08 +- 0.08 M_sun, R_* = 1.1 +- 0.1 R_sun, T_eff = 5675 +- 80 K). This new planet, CoRoT-12b, has a mass of 0.92 +- 0.07 M_Jup and a radius of 1.44 +- 0.13 R_Jup. Its low density can be explained by standard models for irradiated planets.
486 - M. Gillon 2010
We have used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The transiting nature of the planet could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty co ming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, any transit of the planet during the observed phase window is firmly discarded, while the probability that the planet transits but that the eclipse was missed by our observations is nearly negligible (0.26%).
Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal th e transits of one or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth. For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case. GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect any transiting habitable planet down to the size of Mars. The mass measurement of such a small planet would be out of reach for current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object. Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet.
75 - M. Gillon 2009
We present VLT eclipse photometry for the giant planet CoRoT-1b. We observed a transit in the R-band filter and an occultation in a narrow filter centered on 2.09 microns. Our analysis of this new photometry and published radial velocities, in combin ation with stellar-evolutionary modeling, leads to a planetary mass and radius of 1.07 (+0.13,-0.18) M_Jup and 1.45 (+0.07,-0.13) R_Jup, confirming the very low density previously deduced from CoRoT photometry. The large occultation depth that we measure at 2.09 microns (0.278 (+0.043,-0.066) %) is consistent with thermal emission and is better reproduced by an atmospheric model with no redistribution of the absorbed stellar flux to the night side of the planet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا