ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, researchers in answer set programming and constraint programming spent significant efforts in the development of hybrid languages and solving algorithms combining the strengths of these traditionally separate fields. These efforts resulted in a new research area: constraint answer set programming (CASP). CASP languages and systems proved to be largely successful at providing efficient solutions to problems involving hybrid reasoning tasks, such as scheduling problems with elements of planning. Yet, the development of CASP systems is difficult, requiring non-trivial expertise in multiple areas. This suggests a need for a study identifying general development principles of hybrid systems. Once these principles and their implications are well understood, the development of hybrid languages and systems may become a well-established and well-understood routine process. As a step in this direction, in this paper we conduct a case study aimed at evaluating various integration schemas of CASP methods.
We investigate whether pure deflagration models of Chandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynam ic explosion models, in which the deflagration strength is parametrized using the multispot ignition approach. For each model, we calculate detailed nucleosynthesis yields in a post-processing step with a 384 nuclide nuclear network. We also compute synthetic observables with our 3D Monte Carlo radiative transfer code for comparison with observations. For weak and intermediate deflagration strengths (energy release E_nuc <~ 1.1 x 10^51 erg), we find that the explosion leaves behind a bound remnant enriched with 3 to 10 per cent (by mass) of deflagration ashes. However, we do not obtain the large kick velocities recently reported in the literature. We find that weak deflagrations with E_nuc ~ 0.5 x 10^51 erg fit well both the light curves and spectra of 2002cx-like SNe Ia, and models with even lower explosion energies could explain some of the fainter members of this subclass. By comparing our synthetic observables with the properties of SNe Ia, we can exclude the brightest, most vigorously ignited models as candidates for any observed class of SN Ia: their B - V colours deviate significantly from both normal and 2002cx-like SNe Ia and they are too bright to be candidates for other subclasses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا