ترغب بنشر مسار تعليمي؟ اضغط هنا

The three-dimensional momenta of quarks inside a hadron are encoded in transverse momentum-dependent parton distribution functions (TMDs). This work presents an exploratory lattice QCD study of a TMD observable in the pion describing the Boer-Mulders effect, which is related to polarized quark transverse momentum in an unpolarized hadron. Particular emphasis is placed on the behavior as a function of a Collins-Soper evolution parameter quantifying the relative rapidity of the struck quark and the initial hadron, e.g., in a semi-inclusive deep inelastic scattering (SIDIS) process. The lattice calculation, performed at the pion mass m_pi = 518 MeV, utilizes a definition of TMDs via hadronic matrix elements of a quark bilocal operator with a staple-shaped gauge connection; in this context, the evolution parameter is related to the staple direction. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. In contrast to an earlier nucleon study, due to the lower mass of the pion, the calculated data enable quantitative statements about the physically interesting limit of large relative rapidity. In passing, the similarity between the Boer-Mulders effects extracted in the pion and the nucleon is noted.
63 - M.Engelhardt , B.Musch , P.Hagler 2013
The Boer-Mulders transverse momentum-dependent parton distribution (TMD) characterizes polarized quark transverse momentum in an unpolarized hadron. Techniques previously developed for lattice calculations of nucleon TMDs are applied to the pion. The se techniques are based on the evaluation of matrix elements of quark bilocal operators containing a staple-shaped Wilson connection. Results for the Boer-Mulders transverse momentum shift in the pion, obtained at a pion mass of $m_{pi} = 518, mbox{MeV} $, are presented and compared to corresponding results in the nucleon.
174 - M. Engelhardt 2012
Contributions of strange quarks to the mass and spin of the nucleon, characterized by the observables f_Ts and Delta s, respectively, are investigated within lattice QCD. The calculation employs a 2+1-flavor mixed-action lattice scheme, thus treating the strange quark degrees of freedom in dynamical fashion. Numerical results are obtained at three pion masses, m_pi = 495 MeV, 356 MeV, and 293 MeV, renormalized, and chirally extrapolated to the physical pion mass. The value extracted for Delta s at the physical pion mass in the MSbar scheme at a scale of 2 GeV is Delta s = -0.031(17), whereas the strange quark contribution to the nucleon mass amounts to f_Ts =0.046(11). In the employed mixed-action scheme, the nucleon valence quarks as well as the strange quarks entering the nucleon matrix elements which determine f_Ts and Delta s are realized as domain wall fermions, propagators of which are evaluated in MILC 2+1-flavor dynamical asqtad quark ensembles. The use of domain wall fermions leads to mild renormalization behavior which proves especially advantageous in the extraction of f_Ts.
We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, process-dependent Wilson lines. The use of staple-shaped Wilson lines allows us to link lat tice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g_1T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n_f = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.
327 - Michael Engelhardt 2011
A scheme to calculate the electric spin polarizability of the neutron, based on a four-point function approach to the background field method, is presented. The connected contributions to this spin polarizability are evaluated within a mixed action c alculation employing domain wall valence quarks on MILC asqtad sea quark ensembles. Results are reported for two pion masses, 759 MeV and 357 MeV.
37 - Michael Engelhardt 2010
The contributions of strange quarks to the nucleon mass and the nucleon spin are investigated in a mixed action scheme employing domain wall valence quarks and quark loops on MILC asqtad dynamical fermion ensembles. Results are presented for pion masses 495 MeV and 356 MeV.
112 - Michael Engelhardt 2010
The topological susceptibility of the SU(3) random vortex world-surface ensemble, an effective model of infrared Yang-Mills dynamics, is investigated. The model is implemented by composing vortex world-surfaces of elementary squares on a hypercubic l attice, supplemented by an appropriate specification of vortex color structure on the world-surfaces. Topological charge is generated in this picture by writhe and self-intersection of the vortex world-surfaces. Systematic uncertainties in the evaluation of the topological charge, engendered by the hypercubic construction, are discussed. Results for the topological susceptibility are reported as a function of temperature and compared to corresponding measurements in SU(3) lattice Yang-Mills theory. In the confined phase, the topological susceptibility of the random vortex world-surface ensemble appears quantitatively consistent with Yang-Mills theory. As the temperature is raised into the deconfined regime, the topological susceptibility falls off rapidly, but significantly less so than in SU(3) lattice Yang-Mills theory. Possible causes of this deviation, ranging from artefacts of the hypercubic description to more physical sources, such as the adopted vortex dynamics, are discussed.
A calculational scheme for obtaining the electric polarizability of the neutron in lattice QCD with dynamical quarks is developed, using the background field approach. The scheme differs substantially from methods previously used in the quenched appr oximation, the physical reason being that the QCD ensemble is no longer independent of the external electromagnetic field in the dynamical quark case. One is led to compute (certain integrals over) four-point functions. Particular emphasis is also placed on the physical role of constant external gauge fields on a finite lattice; the presence of these fields complicates the extraction of polarizabilities, since it gives rise to an additional shift of the neutron mass unrelated to polarizability effects. The method is tested on a SU(3) flavor-symmetric ensemble furnished by the MILC Collaboration, corresponding to a pion mass of m_pi = 759 MeV. Disconnected diagrams are evaluated using stochastic estimation. A small negative electric polarizability of alpha =(-2.0 +/- 0.9) 10^(-4) fm^3 is found for the neutron at this rather large pion mass; this result does not seem implausible in view of the qualitative behavior of alpha as a function of m_pi suggested by Chiral Effective Theory.
The background field method for measuring the electric polarizability of the neutron is adapted to the dynamical quark case, resulting in the calculation of (certain space-time integrals over) three- and four-point functions. Particular care is taken to disentangle polarizability effects from the effects of subjecting the neutron to a constant background gauge field; such a field is not a pure gauge on a finite lattice and engenders a mass shift of its own. At a pion mass of m_pi = 759 MeV, a small, slightly negative electric polarizability is found for the neutron.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا