ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and spin-based technologies for data storage and processing pose unique challenges for information transduction to light because of magnetic metals optical loss, and the inefficiency and resistivity of semiconductor spin-based emitters at ro om temperature. Transduction between magnetic and optical information in typical organic semiconductors poses additional challenges as the Faraday and Kerr magnetooptical effects rely on the electronic spin-orbit interaction, and the spin-orbit interaction in organics is weak. Other methods of coupling light and spin have emerged in organics, however, as the spin-dependent character of exciton recombination, with spin injection from magnetic electrodes, provides magnetization-sensitive light emission, although such approaches have been limited to low temperature and low polarization efficiency. Here we demonstrate room temperature information transduction between a magnet and an organic light emitting diode that does not require electrical current, based on control via the magnets remanent field of the exciton recombination process in the organic semiconductor.
The effect of an electric field on spin precession in In0.5Ga0.5As/GaAs self-assembled quantum dots is calculated using multiband real-space envelope-function theory. The dependence of the Lande g tensor on electric fields should permit high-frequenc y g tensor modulation resonance, as well as direct, nonresonant electric-field control of the hole spin. Subharmonic resonances have also been found in g tensor modulation resonance of the holes, due to the strong quadratic dependence of components of the hole g tensor on the electric field.
We predict it is possible to achieve high-efficiency room-temperature spin injection from a mag- netic metal into InAs-based semiconductors using an engineered Schottky barrier based on an InAs/AlSb superlattice. The Schottky barrier with most metals is negative for InAs and positive for AlSb. For such metals there exist InAs/AlSb superlattices with a conduction band edge perfectly aligned with the metals Fermi energy. The initial AlSb layer can be grown to the thickness required to produce a desired interface resistance. We show that the conductivity and spin lifetimes of such superlattices are sufficiently high to permit efficient spin injection from ferromagnetic metals.
We calculate the dependence on an applied electric field of the g tensor of a single electron in a self-assembled InAs/GaAs quantum dot. We identify dot sizes and shapes for which one in-plane component of the g tensor changes sign for realistic elec tric fields, and show this should permit full Bloch-sphere control of the electron spin in the quantum dot using only a static magnetic field and a single vertical electric gate.
We develop a quantitatively predictive theory for impurity-band ferromagnetism in the low-doping regime of GaMnAs and compare with experimental measurements of a series of samples whose compositions span the transition from paramagnetic insulating to ferromagnetic conducting behavior. The theoretical Curie temperatures depend sensitively on the local fluctuations in the Mn-hole binding energy, which originates from disorder in the Mn distribution as well as the presence of As antisite defects. The experimentally-determined hopping energy at the Curie temperature is roughly constant over a series of samples whose conductivities vary more than 10^4 and whose hole concentrations vary more than 10^2. Thus in this regime the hopping energy is an excellent predictor of the Curie temperature for a sample, in agreement with the theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا