ترغب بنشر مسار تعليمي؟ اضغط هنا

A common technique for detection of gravitational-wave signals is searching for excess power in frequency-time maps of gravitational-wave detector data. In the event of a detection, model selection and parameter estimation will be performed in order to explore the properties of the source. In this paper, we develop a Bayesian statistical method for extracting model-dependent parameters from observed gravitational-wave signals in frequency-time maps. We demonstrate the method by recovering the parameters of model gravitational-wave signals added to simulated advanced LIGO noise. We also characterize the performance of the method and discuss prospects for future work.
In this paper, we present an analysis of seismic spectra that were calculated from all broadband channels (BH?) made available through IRIS, NIED F-net and Orfeus servers covering the past five years and beyond. A general characterization of the data is given in terms of spectral histograms and data-availability plots. We show that the spectral information can easily be categorized in time and regions. Spectral histograms indicate that seismic stations exist in Africa, Australia and Antarctica that measure spectra significantly below the global low-noise models above 1 Hz. We investigate world-wide coherence between the seismic spectra and other data sets like proximity to cities, station elevation, earthquake frequency, and wind speeds. Elevation of seismic stations in the US is strongly anti-correlated with seismic noise near 0.2 Hz and again above 1.5 Hz. Urban settlements are shown to produce excess noise above 1 Hz, but correlation curves look very different depending on the region. It is shown that wind speeds can be strongly correlated with seismic noise above 0.1 Hz, whereas earthquakes produce seismic noise that shows most clearly in correlation around 80 mHz.
The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgos sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence analysis with seismic probes close to the detector. The primary aim of this study was to identify noisy machines which seismically affect the ITF environment and thus require mitigation attention. Analyzed machines are located at various distances from the experimental halls, ranging from 10m to 100m. An attempt is made to measure the attenuation of emitted noise at the ITF and correlate it to the distance from the source and to seismic attenuation models in soil.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا