ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum information protocols are inevitably affected by decoherence which is associated with the leakage of quantum information into an environment. In this paper we address the possibility of recovering the quantum information from an environmental measurement. We investigate continuous variable quantum information, and we propose a simple environmental measurement that under certain circumstances fully restores the quantum information of the signal state although the state is not reconstructed with unit fidelity. We implement the protocol for which information is encoded into conjugate quadratures of coherent states of light and the noise added under the decoherence process is of Gaussian nature. The correction protocol is tested using both a deterministic as well as a probabilistic strategy. The potential use of the protocol in a continuous variable quantum key distribution scheme as a means to combat excess noise is also investigated.
The fidelity of a quantum transformation is strongly linked with the prior partial information of the state to be transformed. We illustrate this interesting point by proposing and demonstrating the superior cloning of coherent states with prior part ial information. More specifically, we propose two simple transformations that under the Gaussian assumption optimally clone symmetric Gaussian distributions of coherent states as well as coherent states with known phases. Furthermore, we implement for the first time near-optimal state-dependent cloning schemes relying on simple linear optics and feedforward.
We propose and experimentally demonstrate an optimal non-unity gain Gaussian scheme for partial measurement of an unknown coherent state that causes minimal disturbance of the state. The information gain and the state disturbance are quantified by th e noise added to the measurement outcomes and to the output state, respectively. We derive the optimal trade-off relation between the two noises and we show that the trade-off is saturated by non-unity gain teleportation. Optimal partial measurement is demonstrated experimentally using a linear optics scheme with feed-forward.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا