ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremely metal-poor (XMP) galaxies are chemically, and possibly dynamically, primordial objects in the local Universe. Our objective is to characterize the HI content of the XMP galaxies as a class, using as a reference the list of 140 known local X MPs compiled by Morales-Luis et al. (2011). We have observed 29 XMPs, which had not been observed before at 21 cm, using the Effelsberg radio telescope. This information was complemented with HI data published in literature for a further 53 XMPs. In addition, optical data from the literature provided morphologies, stellar masses, star-formation rates and metallicities. Effelsberg HI integrated flux densities are between 1 and 15 Jy km/s, while line widths are between 20 and 120 km/s. HI integrated flux densities and line widths from literature are in the range 0.1 - 200 Jy km/s and 15 - 150 km/s, respectively. Of the 10 new Effelsberg detections, two sources show an asymmetric double-horn profile, while the remaining sources show either asymmetric (7 sources) or symmetric (1 source) single-peak 21 cm line profiles. An asymmetry in the HI line profile is systematically accompanied by an asymmetry in the optical morphology. Typically, the g-band stellar mass-to-light ratios are ~0.1, whereas the HI gas mass-to-light ratios may be up to 2 orders of magnitude larger. Moreover, HI gas-to-stellar mass ratios fall typically between 10 and 20, denoting that XMPs are extremely gas-rich. We find an anti-correlation between the HI gas mass-to-light ratio and the luminosity, whereby fainter XMPs are more gas-rich than brighter XMPs, suggesting that brighter sources have converted a larger fraction of their HI gas into stars. The dynamical masses inferred from the HI line widths imply that the stellar mass does not exceed 5% of the dynamical mass, while the ion{H}{i} mass constitutes between 20 and 60% of the dynamical mass. (abridged)
Classically, optical and near-infrared interferometry have relied on closure phase techniques to produce images. Such techniques allow us to achieve modest dynamic ranges. In order to test the feasibility of next generation optical interferometers in the context of the VLTI-spectro-imager (VSI), we have embarked on a study of image reconstruction and analysis. Our main aim was to test the influence of the number of telescopes, observing nights and distribution of the visibility points on the quality of the reconstructed images. Our results show that observations using six Auxiliary Telescopes (ATs) during one complete night yield the best results in general and is critical in most science cases; the number of telescopes is the determining factor in the image reconstruction outcome. In terms of imaging capabilities, an optical, six telescope VLTI-type configuration and ~200 meter baseline will achieve 4 mas spatial resolution, which is comparable to ALMA and almost 50 times better than JWST will achieve at 2.2 microns. Our results show that such an instrument will be capable of imaging, with unprecedented detail, a plethora of sources, ranging from complex stellar surfaces to microlensing events.
One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce images. Such techniques allow only to achieve modest dynamic ranges. However, with high contrast objects, for faint targets or when structure detail is needed, phase referencing techniques as used in radio interferometry, should theoretically achieve higher dynamic ranges for the same number of telescopes. Our approach is not to provide evidence either for or against the hypothesis that phase referenced imaging gives better dynamic range than closure phase imaging. Instead we wish to explore the potential of this technique for future optical interferometry and also because image reconstruction in the optical using phase referencing techniques has only been performed with limited success. We have generated simulated, noisy, complex visibility data, analogous to the signal produced in radio interferometers, using the VLTI as a template. We proceeded with image reconstruction using the radio image reconstruction algorithms contained in AIPS IMAGR (CLEAN algorithm). Our results show that image reconstruction is successful in most of our science cases, yielding images with a 4 milliarcsecond resolution in K band. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا