ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - J.P. Chen , H. Gao , T.K. Hemmick 2014
In order to fully exploit the physics potential of Jefferson Lab after 12 GeV energy upgrade, a new Solenoidal Large Acceptance Device (SoLID) is proposed. The SoLID spectrometer, with its unique capability of large acceptance and high luminosity, is ideal for precision measurements in semi-inclusive DIS to study transverse spin and transverse-momentum-dependent parton distributions of the nucleon, and for parity-violating Deep Inelastic Scattering (DIS) to perform precision tests of the Standard Model at low energy as well as addressing specific issues in nucleon structure including charge symmetry violation, d/u ratio and higher-twist effects due to di-quark. SoLID is also essential for precision measurements of J/psi electroproduction in the threshold region to study non-perturbative gluon dynamics and interaction. Five highly rated SoLID experiments and two run group experiments have been approved by the JLab Physics Advisory Committee. The physics program is presented along with an overview of the SoLID instrumentation and its current status.
Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, $G_{E}/G_{M}$, obtained separately from cross section and polarization tr ansfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic $H(vec{e},evec{p})$ reaction for three different beam energies at a fixed squared momentum transfer $Q^2 = 2.5$ GeV$^2$, spanning a wide range of the virtual photon polarization parameter, $epsilon$. From these measured polarization observables, we have obtained separately the ratio $R$, which equals $mu_p G_{E}/G_{M}$ in the Born approximation, and the longitudinal polarization transfer component $P_ell$, with statistical and systematic uncertainties of $Delta R approx pm 0.01 mbox{(stat)} pm 0.013 mbox{(syst)}$ and $Delta P_ell/P^{Born}_{ell} approx pm 0.006 mbox{(stat)}pm 0.01 mbox{(syst)}$. The ratio $R$ is found to be independent of $epsilon$ at the 1.5% level, while the $epsilon$ dependence of $P_ell$ shows an enhancement of $(2.3 pm 0.6) %$ relative to the Born approximation at large $epsilon$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا