ترغب بنشر مسار تعليمي؟ اضغط هنا

259 - M. Ebbinghaus , L. Santen 2009
The microtubule network, an important part of the cytoskeleton, is constantly remodeled by alternating phases of growth and shrinkage of individual filaments. Plus-end tracking proteins (+TIPs) interact with the microtubule and in many cases alter it s dynamics. While it is established that the prototypal CLIP-170 enhances microtubule stability by increasing rescues, the plus-end tracking mechanism is still under debate. We present a model for microtubule dynamics in which a rescue factor is dynamically added to the filament while growing. As a consequence, the filament shows aging behavior which should be experimentally accessible and thus allow one to exclude some hypothesized models of the inclusion of rescue factors at the microtubule plus end. Additionally, we show the strong influence of the cell geometry on the quantitative results.
Bidirectional variants of stochastic many particle models for transport by molecular motors show a strong tendency to form macroscopic clusters on static lattices. Inspired by the fact that the microscopic tracks for molecular motors are dynamical, w e study the influence of different types of lattice dynamics on stochastic bidirectional transport. We observe a transition toward efficient transport (corresponding to the dissolution of large clusters) controlled by the lattice dynamics.
179 - M. Ebbinghaus , L. Santen 2009
We introduce a stochastic lattice gas model including two particle species and two parallel lanes. One lane with exclusion interaction and directed motion and the other lane without exclusion and unbiased diffusion, mimicking a micotubule filament an d the surrounding solution. For a high binding affinity to the filament, jam-like situations dominate the systems behaviour. The fundamental process of position exchange of two particles is approximated. In the case of a many-particle system, we were able to identify a regime in which the system is rather homogenous presenting only small accumulations of particles and a regime in which an important fraction of all particles accumulates in the same cluster. Numerical data proposes that this cluster formation will occur at all densities for large system sizes. Coupling of several filaments leads to an enhanced cluster formation compared to the uncoupled system, suggesting that efficient bidirectional transport on one-dimensional filaments relies on long-ranged interactions and track formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا