ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent high-precision mass measurements of $^{9}$Li and $^{9}$Be, performed with the TITAN Penning trap at the TRIUMF ISAC facility, are analyzed in light of state-of-the-art shell model calculations. We find an explanation for the anomalous Isobaric Mass Multiplet Equation (IMME) behaviour for the two $A$ = 9 quartets. The presence of a cubic $d$ = 6.3(17) keV term for the $J^{pi}$ = 3/2$^{-}$ quartet and the vanishing cubic term for the excited $J^{pi}$ = 1/2$^{-}$ multiplet depend upon the presence of a nearby $T$ = 1/2 state in $^{9}$B and $^{9}$Be that induces isospin mixing. This is contrary to previous hypotheses involving purely Coulomb and charge-dependent effects. $T$ = 1/2 states have been observed near the calculated energy, above the $T$ = 3/2 state. However an experimental confirmation of their $J^{pi}$ is needed.
The first direct mass-measurement of $^{6}$He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of $^{8}$He was determined with improved precision over our previous measurement. The obtained masses are $m$($^{6}$He) = 6.018 885 883(57) u and $m$($^{8}$He) = 8.033 934 44(11) u. The $^{6}$He value shows a deviation from the literature of 4$sigma$. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) fm and 1.959(16) fm for $^{6}$He and $^{8}$He respectively. We present a detailed comparison to nuclear theory for $^6$He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا