ترغب بنشر مسار تعليمي؟ اضغط هنا

220 - M. Steffen 2014
It is not yet clear whether magnetic fields play an essential role in shaping planetary nebulae (PNe), or whether stellar rotation alone and/or a close binary companion can account for the variety of the observed nebular morphologies. In a quest for empirical evidence verifying or disproving the role of magnetic fields in shaping PNe, we follow up on previous attempts to measure the magnetic field in a representative sample of PN central stars. We obtained low-resolution polarimetric spectra with FORS 2 at VLT for a sample of twelve bright central stars of PNe with different morphology, including two round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets are Wolf-Rayet type central stars. For the majority of the observed central stars, we do not find any significant evidence for the existence of surface magnetic fields. However, our measurements may indicate the presence of weak mean longitudinal magnetic fields of the order of 100 Gauss in the central star of the young elliptical planetary nebula IC 418, as well as in the Wolf-Rayet type central star of the bipolar nebula Hen2-113 and the weak emission line central star of the elliptical nebula Hen2-131. A clear detection of a 250 G mean longitudinal field is achieved for the A-type companion of the central star of NGC 1514. Some of the central stars show a moderate night-to-night spectrum variability, which may be the signature of a variable stellar wind and/or rotational modulation due to magnetic features. We conclude that strong magnetic fields of the order of kG are not widespread among PNe central stars. Nevertheless, simple estimates based on a theoretical model of magnetized wind bubbles suggest that even weak magnetic fields below the current detection limit of the order of 100 G may well be sufficient to contribute to the shaping of PNe throughout their evolution.
We present the result of a study on the expansion properties and internal kinematics of round/elliptical planetary nebulae of the Milky Way disk, the halo, and of the globular cluster M15. The purpose of this study is to considerably enlarge the smal l sample of nebulae with precisely determined expansion properties. To this aim, we selected a representative sample of objects with different evolutionary stages and metallicities and conducted high-resolution echelle spectroscopy. In most cases, we succeeded in detecting the weak signals from the outer nebular shell which are attached to the main line emission from the bright nebular rim. Next to the measurement of the motion of the rim gas by decomposition of the main line components into Gaussians, we were able to measure separately, for most objects for the first time, the gas velocity immediately behind the leading shock of the shell, i.e. the post-shock velocity. We more than doubled the number of objects for which the velocities of both rim and shell are known and confirm that the overall expansion of planetary nebulae is accelerating with time. There are, however, differences between the expansion behaviour of the shell and the rim. This observed distinct velocity evolution of both rim and shell is explained by radiation-hydrodynamics simulations, at least qualitatively. Because of the time-dependent boundary conditions, a planetary nebula will never evolve into a simple self-similar expansion. Also the metal-poor objects behave as theory predicts: The post-shock velocities are higher and the rim flow velocities are equal or even lower compared to disk objects at similar evolutionary stage. We detected, for the first time, in some objects an asymmetric expansion behaviour: The relative expansions between rim and shell appear to be different for the receding and approaching parts of the nebular envelope.
The visibility time of planetary nebulae (PNe) in stellar systems is an essential quantity for estimating the size of a PN population in the context of general population studies. For instance, it enters directly into the PN death rate determination. The basic ingredient for determining visibility times is the typical nebular expansion velocity, as a suited average over all PN sizes of a PN population within a certain volume or stellar system. The true expansion speed of the outer nebular edge of a PN is, however, not accessible by spectroscopy -- a difficulty that we surmount by radiation-hydrodynamics modelling. We find a mean true expansion velocity of 42 km/s, i.e. nearly twice as high as the commonly adopted value to date. Accordingly, the time for a PN to expand to a radius of, say 0.9 pc, is only 21000 +/- 5000 years. This visibility time of a PN holds for all central star masses since a nebula does not become extinct as the central star fades. There is, however, a dependence on metallicity in the sense that the visibility time becomes shorter for lower nebular metal content. With the higher expansion rate of PNe derived here we determined their local death-rate density as (1.4 +/- 0.5) x E-12 PN pc^{-3} yr^{-1}, using the local PN density advocated by Frew (2008).
We present an overview of the current status of our efforts to derive the microturbulence and macroturbulence parameters (ximic and ximac) from the CIFIST grid of CO5BOLD 3D model atmospheres as a function of the basic stellar parameters Teff, log g, and [M/H]. The latest results for the Sun and Procyon show that the derived microturbulence parameter depends significantly on the numerical resolution of the underlying 3D simulation, confirming that `low-resolution models tend to underestimate the true value of ximic. Extending the investigation to twelve further simulations with different Teff, log g, and [M/H], we obtain a first impression of the predicted trend of ximic over the Hertzsprung-Russell diagram: in agreement with empirical evidence, microturbulence increases towards higher effective temperature and lower gravity. The metallicity dependence of ximic must be interpreted with care, since it also reflects the deviation between the 1D and 3D photospheric temperature stratifications that increases systematically towards lower metallicity.
108 - M. Steffen , R. Cayrel , E. Caffau 2012
The presence of 6Li in the atmospheres of metal-poor halo stars is usually inferred from the detection of a subtle extra depression in the red wing of the 7Li doublet line at 670.8 nm. However, the intrinsic line asymmetry caused by convective flows in the photospheres of cool stars is almost indistinguishable from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D model atmospheres, ignoring the convection-induced line asymmetry, must therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D non-LTE line profiles of the Li 670.8 nm feature, we quantify the differential effect of the convective line asymmetry on the derived 6Li abundance as a function of effective temperature, gravity, and metallicity. As expected, we find that the asymmetry effect systematically reduces the resulting 6Li/7Li ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges between -0.005 and -0.020. When this purely theoretical correction is taken into account for the Asplund 2006 sample of stars, the number of significant 6Li detections decreases from 9 to 5 (2 sigma criterion), or from 5 to 2 (3 sigma criterion). We also present preliminary results of a re-analysis of high-resolution, high S/N spectra of individual metal-poor turn-off stars, to see whether the second Lithium problem actually disappears when accounting properly for convection and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD84937 seems to be the only significant (2 sigma) detection of 6Li. In view of our results, the existence of a 6Li plateau appears questionable.
120 - M. Steffen , C. Sandin , R. Jacob 2011
Based on time-dependent radiation-hydrodynamics simulations of the evolution of Planetary Nebulae (PNe), we have carried out a systematic parameter study to address the non-trivial question of how the diffuse X-ray emission of PNe with closed central cavities is expected to depend on the evolutionary state of the nebula, the mass of the central star, and the metallicity of stellar wind and circumstellar matter. We have also investigated how the model predictions depend on the treatment of thermal conduction at the interface between the central `hot bubble and the `cool inner nebula, and compare the results with recent X-ray observations. Our study includes models whose properties resemble the extreme case of PNe with Wolf-Rayet type central stars. Indeed, such models are found to produce the highest X-ray luminosities.
We measure the coherence of a new superconducting qubit, the {em low-impedance flux qubit}, finding $T_2^* sim T_1 sim 1.5mu$s. It is a three-junction flux qubit, but the ratio of junction critical currents is chosen to make the qubits potential have a single well form. The low impedance of its large shunting capacitance protects it from decoherence. This qubit has a moderate anharmonicity, whose sign is reversed compared with all other popular qubit designs. The qubit is capacitively coupled to a high-Q resonator in a $lambda/2$ configuration, which permits the qubits state to be read out dispersively.
50 - M. Steffen , D. Schoenberner , 2008
Observations with space-borne X-ray telescopes revealed the existence of soft, diffuse X-ray emission from the inner regions of planetary nebulae. Although the existing images support the idea that this emission arises from the hot shocked central-st ar wind which fills the inner cavity of a planetary nebula, existing models have difficulties to explain the observations consistently. We investigate how the inclusion of thermal conduction changes the physical parameters of the hot shocked wind gas and the amount of X-ray emission predicted by time-dependent hydrodynamical models of planetary nebulae with central stars of normal, hydrogen-rich surface composition. The radiation hydrodynamical models show that heat conduction leads to lower temperatures and higher densities within a bubble and brings the physical properties of the X-ray emitting domain into close agreement with the values derived from observations. Depending on the central-star mass and the evolutionary phase, our models predict X-ray [0.45--2.5 keV] luminosities between $10^{-8}$ and $10^{-4}$ of the stellar bolometric luminosities, in good agreement with the observations. Less than 1% of the wind power is radiated away in this X-ray band. Although temperature, density, and also the mass of the hot bubble is significantly altered by heat conduction, the dynamics of the whole system remains practically the same. Heat conduction allows the construction of nebular models which predict the correct amount of X-ray emission and at the same time are fully consistent with the observed mass-loss rate and wind speed. Thermal conduction must be considered as a viable physical process for explaining the diffuse X-ray emission from planetary nebulae with closed inner cavities. Magnetic fields must then be absent or extremely weak.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا