ترغب بنشر مسار تعليمي؟ اضغط هنا

We present evidence for mass segregation in the outer-halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope ima ging, we analyze the radial dependence of the stellar mass function in the clusters inner 39.2 pc in the mass range of 0.53-0.80 M_sun, ranging from the main-sequence turn-off down to a V-band magnitude of 27.1 mag. The mass function at different radii is well approximated by a power law and rises from a shallow slope of 0.6+/-0.2 in the clusters core to a slope of 1.6+/-0.3 beyond 18.6 pc. This is seemingly in conflict with the finding by Beccari et al. (2011), who interpret the clusters non-segregated population of (more massive) blue straggler stars, compared to (less massive) red giants and horizontal branch stars, as evidence that the cluster has not experienced dynamical segregation yet. We discuss how both results can be reconciled. Our findings indicate that the cluster was either primordially mass-segregated and/or used to be significantly more compact in the past. For the latter case, we propose tidal shocks as the mechanism driving the clusters expansion, which would imply that Palomar 14 is on a highly eccentric orbit. Conversely, if the cluster formed already extended and with primordial mass segregation, this could support an accretion origin of the cluster.
68 - Matthias J. Frank 2014
The last fifteen years have seen the discovery of new types of low-mass stellar systems that bridge the gap between the once well-separated regimes of galaxies and of star clusters. Whether such objects are considered galaxies depends also on the def inition of the term galaxy, and several possible criteria are based on their internal dynamics (e.g. the common concept that galaxies contain dark matter). Moreover, studying the internal dynamics of low-mass stellar systems may also help understand their origin and evolutionary history. The focus of this paper is on two classes of stellar systems at the interface between star clusters and dwarf galaxies: ultra-compact dwarf galaxies (UCDs) and diffuse Galactic globular clusters (GCs). A review of our current knowledge on the properties of UCDs is provided and dynamical considerations applying to diffuse GCs are introduced. In the following, recent observational results on the internal dynamics of individual UCDs and diffuse Galactic globular clusters are presented.
We present an analysis of the radial dependence of the stellar mass function in the diffuse outer-halo globular cluster Palomar 14. Using archival HST/WFPC2 data of the clusters central 39 pc (corresponding to ~0.85*r_h) we find that the mass functio n in the mass range of 0.55 to 0.85 solar masses is well approximated by a power-law at all radii. The mass function steepens with increasing radius, from a shallow power-law slope of 0.66+/-0.32 in the clusters centre to a slope of 1.61+/-0.33 beyond the core radius, showing that the cluster is mass-segregated. This is seemingly in conflict with its long present-day half-mass relaxation time of ~20 Gyr, and with the recent finding by Beccari et al. (2011), who interpret the clusters non-concentrated population of blue straggler stars as evidence that dynamical segregation has not affected the cluster yet. We discuss this apparent conflict and argue that the cluster must have either formed with primordial mass segregation, or that its relaxation time scale must have been much smaller in the past, i.e. that the cluster must have undergone a significant expansion.
We obtained precise line-of-sight radial velocities of 23 member stars of the remote halo globular cluster Palomar 4 (Pal 4) using the High Resolution Echelle Spectrograph (HIRES) at the Keck I telescope. We also measured the mass function of the clu ster down to a limiting magnitude of V~28 mag using archival HST/WFPC2 imaging. We derived the clusters surface brightness profile based on the WFPC2 data and on broad-band imaging with the Low-Resolution Imaging Spectrometer (LRIS) at the Keck II telescope. We find a mean cluster velocity of 72.55+/-0.22 km/s and a velocity dispersion of 0.87+/-0.18 km/s. The global mass function of the cluster, in the mass range 0.55<=M<=0.85 M_solar, is shallower than a Kroupa mass function and the cluster is significantly depleted in low-mass stars in its center compared to its outskirts. Since the relaxation time of Pal 4 is of the order of a Hubble time, this points to primordial mass segregation in this cluster. Extrapolating the measured mass function towards lower-mass stars and including the contribution of compact remnants, we derive a total cluster mass of 29800 M_solar. For this mass, the measured velocity dispersion is consistent with the expectations of Newtonian dynamics and below the prediction of Modified Newtonian Dynamics (MOND). Pal 4 adds to the growing body of evidence that the dynamics of star clusters in the outer Galactic halo can hardly be explained by MOND.
65 - M. J. Frank 2011
We present the internal kinematics of UCD3, the brightest known ultra-compact dwarf galaxy (UCD) in the Fornax cluster, making this the first UCD with spatially resolved spectroscopy. Our study is based on seeing-limited observations obtained with th e ARGUS Integral Field Unit of the VLT/FLAMES spectrograph under excellent seeing conditions (0.5 - 0.67 arcsec FWHM). The velocity field of UCD3 shows the signature of weak rotation, comparable to that found in massive globular clusters. Its velocity dispersion profile is fully consistent with an isotropic velocity distribution and the assumption that mass follows the light distribution obtained from Hubble Space Telescope imaging. In particular, there is no evidence for the presence of an extended dark matter halo contributing a significant (>~33 per cent within R < 200 pc) mass fraction, nor for a central black hole more massive than ~5 per cent of the UCDs mass. While this result does not exclude a galaxian origin for UCD3, we conclude that its internal kinematics are fully consistent with it being a massive star cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا