ترغب بنشر مسار تعليمي؟ اضغط هنا

The dependence of the spin-pumping effect on the yttrium iron garnet (Y3Fe5O12, YIG) thickness detected by the inverse spin Hall effect (ISHE) has been investigated quantitatively. Due to the spin-pumping effect driven by the magnetization precession in the ferrimagnetic insulator YIG film a spin-polarized electron current is injected into the Pt layer. This spin current is transformed into electrical charge current by means of the ISHE. An increase of the ISHE-voltage with increasing film thickness is observed and compared to the theoretically expected behavior. The effective damping parameter of the YIG/Pt samples is found to be enhanced with decreasing YIG film thickness. The investigated samples exhibit a spin mixing conductance of g=(7.43 pm 0.36) times 10^{18} m^{-2} and a spin Hall angle of theta_{ISHE} = 0.009 pm 0.0008. Furthermore, the influence of nonlinear effects on the generated voltage and on the Gilbert damping parameter at high excitation powers are revealed. It is shown that for small YIG film thicknesses a broadening of the linewidth due to nonlinear effects at high excitation powers is suppressed because of a lack of nonlinear multi-magnon scattering channels. We have found that the variation of the spin-pumping efficiency for thick YIG samples exhibiting pronounced nonlinear effects is much smaller than the nonlinear enhancement of the damping.
The dependence of the spin pumping efficiency and the spin mixing conductance on the surface processing of yttrium iron garnet (YIG) before the platinum (Pt) deposition has been investigated quantitatively. The ferromagnetic resonance driven spin pum ping injects a spin polarized current into the Pt layer, which is transformed into an electromotive force by the inverse spin Hall effect. Our experiments show that the spin pumping effect indeed strongly depends on the YIG/Pt interface condition. We measure an enhancement of the inverse spin Hall voltage and the spin mixing conductance of more than two orders of magnitude with improved sample preparation.
We experimentally demonstrate the manipulation of magnetization relaxation utilizing a temperature difference across the thickness of an yttrium iron garnet/platinum (YIG/Pt) hetero-structure: the damping is either increased or decreased depending on the sign of the temperature gradient. This effect might be explained by a thermally-induced spin torque on the magnetization precession. The heat-induced variation of the damping is detected by microwave techniques as well as by a DC voltage caused by spin pumping into the adjacent Pt layer and the subsequent conversion into a charge current by the inverse spin Hall effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا