ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - M. Wing , G. Xia , O. Mete 2014
Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.
In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, $x_gamma^{mathrm{meas}}$, contributing to the photon-jet final st ate. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges $6 < E_T^{gamma} < 15$ GeV and $-0.7 < eta^{gamma} < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{rm jet} < 35$ GeV and $-1.5 < eta^{rm jet} < 1.8$, for an integrated luminosity of 374 $mathrm{pb}^{-1}$. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.
The photoproduction of $D^{*pm}$ mesons has been measured with the ZEUS detector at HERA at three different ep centre-of-mass energies, $sqrt{s}$, of 318, 251 and 225 GeV. For each data set, $D^*$ mesons were required to have transverse momentum, $p_ T^{D^*}$, and pseudorapidity, $eta^{D^*}$, in the ranges $1.9 < p_T^{D^*} < 20$ GeV and $|eta^{D^*}|<1.6$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$. The dependence on $sqrt{s}$ was studied by normalising to the high-statistics measurement at $sqrt{s} =318$ GeV. This led to the cancellation of a number of systematic effects both in data and theory. Predictions from next-to-leading-order QCD describe the $sqrt{s}$ dependence of the data well.
The reduced cross sections for $e^{+}p$ deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, $318$, $251$ and $225$ GeV. The cross sections, measured double differentially in Bjorken $x$ and the virtuality, $Q^2$, were obtained in the region $0.13 leq y leq 0.75$, where $y$ denotes the inelasticity and $5 leq Q^2 leq 110$ GeV$^2$. The proton structure functions $F_2$ and $F_L$ were extracted from the measured cross sections.
New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by i njecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.
Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and t he reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.
A data acquisition (DAQ) system has been developed which will read out and control calorimeters serving as prototype systems for a future detector at an electron-positron linear collider. This is a modular, flexible and scalable DAQ system in which t he hardware and signals are standards-based, using FPGAs and serial links. The idea of a backplaneless system was also pursued with a commercial development board housed in a PC and a chain of concentrator cards between it and the detector forming the basis of the system. As well as describing the concept and performance of the system, its merits and disadvantages are discussed.
65 - M. Wing 2008
In this article, recent measurements of diffraction in deep inelastic scattering are presented along with QCD fits to extract the partonic structure of the exchange. These so-called diffractive parton density functions can then be used in predictions for other processes to test factorisation in diffraction. This is an important verification of QCD and has significance for predicting exotic signals such as diffractive Higgs production at the LHC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا