ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - M. Mumpower , R. Surman , M. Beard 2014
Nuclear masses are one of the key ingredients of nuclear physics that go into astrophysical simulations of the $r$ process. Nuclear masses effect $r$-process abundances by entering into calculations of Q-values, neutron capture rates, photo-dissociat ion rates, beta-decay rates, branching ratios and the properties of fission. Most of the thousands of short-lived neutron-rich nuclei which are believed to participate in the $r$ process lack any experimental verification, thus the identification of the most influential nuclei is of paramount importance. We have conducted mass sensitivity studies near the $N=82$ closed shell in the context of a main $r$-process. Our studies take into account how an uncertainty in a single nuclear mass propagates to influence the relevant quantities of neighboring nuclei and finally to $r$-process abundances. We identify influential nuclei in various astrophysical conditions using the FRDM mass model. We show that our conclusions regarding these key nuclei are still retained when a superposition of astrophysical trajectories is considered.
We have performed for the first time a complete $r$-process mass sensitivity study in the $N=82$ region. We take into account how an uncertainty in a single nuclear mass propagates to influence important quantities of neighboring nuclei, including Q- values and reaction rates. We demonstrate that nuclear mass uncertainties of $pm0.5$ MeV in the $N=82$ region result in up to an order of magnitude local change in $r$-process abundance predictions. We identify key nuclei in the study whose mass has a substantial impact on final $r$-process abundances and could be measured at future radioactive beam facilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا