ترغب بنشر مسار تعليمي؟ اضغط هنا

The combination of strong gravitational lensing and stellar kinematics provides a powerful and robust method to investigate the mass and dynamical structure of early-type galaxies. We demonstrate this approach by analysing two massive ellipticals fro m the XLENS Survey for which both high-resolution HST imaging and X-Shooter spectroscopic observations are available. We adopt a flexible axisymmetric two-component mass model for the lens galaxies, consisting of a generalised NFW dark halo and a realistic self-gravitating stellar mass distribution. For both systems, we put constraints on the dark halo inner structure and flattening, and we find that they are dominated by the luminous component within one effective radius. By comparing the tight inferences on the stellar mass from the combined lensing and dynamics analysis with the values obtained from stellar population studies, we conclude that both galaxies are characterised by a Salpeter-like stellar initial mass function.
73 - Matteo Barnab`e 2013
We conduct a detailed investigation of the properties of the stellar initial mass function (IMF) in two massive early-type lens galaxies with velocity dispersions of sigma ~245 km/s and sigma ~325 km/s, for which both HST imaging and X-Shooter spectr a are available. We compare the inferences obtained from two fully independent methods: (i) a combined gravitational lensing and stellar dynamics (L&D) analysis of the data sets employing self-consistent axisymmetric models, and (ii) a spectroscopic simple stellar population (SSP) analysis of optical line-strength indices, assuming single power-law IMFs. The results from the two approaches are found to be in agreement within the 1-sigma uncertainties. Both galaxies are consistent with having a Salpeter IMF (power-law slope of x = 2.35), which is strongly favoured over a Chabrier IMF (x = 1.8), with probabilities inferred from the joint analysis of 89% and 99%, respectively. Bottom-heavy IMFs significantly steeper than Salpeter (x >= 3.0) are ruled out with decisive evidence (Bayes factor B > 1000) for both galaxies, as they exceed the total mass derived from the L&D constraints. Our analysis allows, for the first time, the inference of the low-mass cut-off of the IMF (M_low). Combining the joint L&D and SSP analyses of both galaxies, we infer an IMF slope of x = 2.22 +/- 0.14, consistent with Salpeter IMF, and a low-mass limit M_low = 0.13 +/- 0.03 M_sun, just above the hydrogen burning limit.
We construct a fully self-consistent mass model for the lens galaxy J2141 at z=0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very fl exible axisymmetric mass model constituted by a generalized NFW dark matter halo and a stellar mass distribution obtained by deprojecting the MGE fit to the high-resolution K-band LGSAO imaging data of the galaxy, with the (spatially constant) M/L ratio as a free parameter. We model the stellar kinematics by solving the anisotropic Jeans equations. We find that the inner logarithmic slope of the dark halo is weakly constrained (gamma = 0.82^{+0.65}_{-0.54}), and consistent with an unmodified NFW profile. We infer the galaxy to have (i) a dark matter fraction within 2.2 disk radii of 0.28^{+0.15}_{-0.10}, independent of the galaxy stellar population, implying a maximal disk for J2141; (ii) an apparently uncontracted dark matter halo, with concentration c_{-2} = 7.7_{-2.5}^{+4.2} and virial velocity v_{vir} = 242_{-39}^{+44} km/s, consistent with LCDM predictions; (iii) a slightly oblate halo (q_h = 0.75^{+0.27}_{-0.16}), consistent with predictions from baryon-affected models. Comparing the stellar mass inferred from the combined analysis (log_{10} Mstar/Msun = 11.12_{-0.09}^{+0.05}) with that inferred from SPS modelling of the galaxies colours, and accounting for a cold gas fraction of 20+/-10%, we determine a preference for a Chabrier IMF over Salpeter IMF by a Bayes factor of 5.7 (substantial evidence). We infer a value beta_{z} = 1 - sigma^2_{z}/sigma^2_{R} = 0.43_{-0.11}^{+0.08} for the orbital anisotropy parameter in the meridional plane, in agreement with most studies of local disk galaxies, and ruling out at 99% CL that the dynamics of this system can be described by a two-integral distribution function. [Abridged]
We combine in a self-consistent way the constraints from both gravitational lensing and stellar kinematics to perform a detailed investigation of the internal mass distribution, amount of dark matter, and dynamical structure of the 16 early-type lens galaxies from the SLACS Survey, at z = 0.08 - 0.33, for which both HST/ACS and NICMOS high-resolution imaging and VLT VIMOS IFU spectroscopy are available. Based on this data set, we analyze the inner regions of the galaxies, i.e. typically within one (3D) effective radius r_e, under the assumption of axial symmetry and by constructing dynamical models supported by two-integral stellar DFs. For all systems, the total mass density distribution is found to be well approximated by a simple power-law: this profile is on average slightly super-isothermal, with a logarithmic slope <gamma> = 2.074^{+0.043}_{-0.041} (68% CL) and an intrinsic scatter 0.144^{+0.055}_{-0.014}, and is fairly round, with an average axial ratio <q> = 0.77+/-0.04. The lower limit for the dark matter fraction (fDM) inside r_e ranges, in individual systems, from nearly zero to almost a half, with a median value of 12%. By including stellar masses derived from SPS models with a Salpeter IMF, we obtain an average fDM = 31%. The fDM rises to 61% if, instead, a Chabrier IMF is assumed. For both IMFs, the dark matter fraction increases with the total mass of the galaxy (3-sigma correlation). Based on the intrinsic angular momentum parameter calculated from our models, we find that the galaxies can be divided into two dynamically distinct groups, which are shown to correspond to the usual classes of the slow and fast rotators. Overall, the SLACS systems are structurally and dynamically very similar to their nearby counterparts, indicating that the inner regions of early-type galaxies have undergone little, if any, evolution since redshift z ~ 0.35. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا