ترغب بنشر مسار تعليمي؟ اضغط هنا

The H.E.S.S. experiment is an array of four imaging Cherenkov telescopes located in the Khomas Highlands of Namibia. It has been operating in its full configuration since December 2003 and detects very-high-energy (VHE) gamma rays ranging from 100 Ge V to 50 TeV. Since 2004, the continuous observation of the Galactic Plane by the H.E.S.S. array of telescopes has yielded the discovery of more than 50 sources, belonging to the classes of pulsar wind nebulae (PWN), supernova remnants (SNR), gamma ray binaries and, more recently, a stellar cluster and molecular clouds in the vicinity of shell-type SNRs. Galactic emission seen by H.E.S.S. and its implications for particle acceleration in our Galaxy are discussed.
Recent theoretical predictions of the lowest very high energy (VHE) luminosity of SN 1006 are only a factor 5 below the previously published H.E.S.S. upper limit, thus motivating further in-depth observations of this source. Deep observations at VHE energies (above 100 GeV) were carried out with the High Energy Stereoscopic System (H.E.S.S.) of Cherenkov Telescopes from 2003 to 2008. More than 100 hours of data have been collected and subjected to an improved analysis procedure. Observations resulted in the detection of VHE gamma-rays from SN 1006. The measured gamma-ray spectrum is compatible with a power-law, the flux is of the order of 1% of that detected from the Crab Nebula, and is thus consistent with the previously established H.E.S.S. upper limit. The source exhibits a bipolar morphology, which is strongly correlated with non-thermal X-rays. Because the thickness of the VHE-shell is compatible with emission from a thin rim, particle acceleration in shock waves is likely to be the origin of the gamma-ray signal. The measured flux level can be accounted for by inverse Compton emission, but a mixed scenario that includes leptonic and hadronic components and takes into account the ambient matter density inferred from observations also leads to a satisfactory description of the multi-wavelength spectrum.
We present a sophisticated gamma-ray likelihood reconstruction technique for Imaging Atmospheric Cerenkov Telescopes. The technique is based on the comparison of the raw Cherenkov camera pixel images of a photon induced atmospheric particle shower wi th the predictions from a semi-analytical model. The approach was initiated by the CAT experiment in the 1990s, and has been further developed by a new fit algorithm based on a log-likelihood minimisation using all pixels in the camera, a precise treatment of night sky background noise, the use of stereoscopy and the introduction of first interaction depth as parameter of the model. The reconstruction technique provides a more precise direction and energy reconstruction of the photon induced shower compared to other techniques in use, together with a better gamma efficiency, especially at low energies, as well as an improved background rejection. For data taken with the H.E.S.S. experiment, the reconstruction technique yielded a factor of ~2 better sensitivity compared to the H.E.S.S. standard reconstruction techniques based on second moments of the camera images (Hillas Parameter technique).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا