ترغب بنشر مسار تعليمي؟ اضغط هنا

285 - Mathias Niepert 2014
We present a novel approach to detecting and utilizing symmetries in probabilistic graphical models with two main contributions. First, we present a scalable approach to computing generating sets of permutation groups representing the symmetries of g raphical models. Second, we introduce orbital Markov chains, a novel family of Markov chains leveraging model symmetries to reduce mixing times. We establish an insightful connection between model symmetries and rapid mixing of orbital Markov chains. Thus, we present the first lifted MCMC algorithm for probabilistic graphical models. Both analytical and empirical results demonstrate the effectiveness and efficiency of the approach.
A lattice-theoretic framework is introduced that permits the study of the conditional independence (CI) implication problem relative to the class of discrete probability measures. Semi-lattices are associated with CI statements and a finite, sound an d complete inference system relative to semi-lattice inclusions is presented. This system is shown to be (1) sound and complete for saturated CI statements, (2) complete for general CI statements, and (3) sound and complete for stable CI statements. These results yield a criterion that can be used to falsify instances of the implication problem and several heuristics are derived that approximate this lattice-exclusion criterion in polynomial time. Finally, we provide experimental results that relate our work to results obtained from other existing inference algorithms.
Numerous digital humanities projects maintain their data collections in the form of text, images, and metadata. While data may be stored in many formats, from plain text to XML to relational databases, the use of the resource description framework (R DF) as a standardized representation has gained considerable traction during the last five years. Almost every digital humanities meeting has at least one session concerned with the topic of digital humanities, RDF, and linked data. While most existing work in linked data has focused on improving algorithms for entity matching, the aim of the LinkedHumanities project is to build digital humanities tools that work out of the box, enabling their use by humanities scholars, computer scientists, librarians, and information scientists alike. With this paper, we report on the Linked Open Data Enhancer (LODE) framework developed as part of the LinkedHumanities project. With LODE we support non-technical users to enrich a local RDF repository with high-quality data from the Linked Open Data cloud. LODE links and enhances the local RDF repository without compromising the quality of the data. In particular, LODE supports the user in the enhancement and linking process by providing intuitive user-interfaces and by suggesting high-quality linking candidates using tailored matching algorithms. We hope that the LODE framework will be useful to digital humanities scholars complementing other digital humanities tools.
A sequence of random variables is exchangeable if its joint distribution is invariant under variable permutations. We introduce exchangeable variable models (EVMs) as a novel class of probabilistic models whose basic building blocks are partially exc hangeable sequences, a generalization of exchangeable sequences. We prove that a family of tractable EVMs is optimal under zero-one loss for a large class of functions, including parity and threshold functions, and strictly subsumes existing tractable independence-based model families. Extensive experiments show that EVMs outperform state of the art classifiers such as SVMs and probabilistic models which are solely based on independence assumptions.
412 - Mathias Niepert 2013
The Rao-Blackwell theorem is utilized to analyze and improve the scalability of inference in large probabilistic models that exhibit symmetries. A novel marginal density estimator is introduced and shown both analytically and empirically to outperfor m standard estimators by several orders of magnitude. The developed theory and algorithms apply to a broad class of probabilistic models including statistical relational models considered not susceptible to lifted probabilistic inference.
270 - Mathias Niepert 2012
We present a novel approach to detecting and utilizing symmetries in probabilistic graphical models with two main contributions. First, we present a scalable approach to computing generating sets of permutation groups representing the symmetries of g raphical models. Second, we introduce orbital Markov chains, a novel family of Markov chains leveraging model symmetries to reduce mixing times. We establish an insightful connection between model symmetries and rapid mixing of orbital Markov chains. Thus, we present the first lifted MCMC algorithm for probabilistic graphical models. Both analytical and empirical results demonstrate the effectiveness and efficiency of the approach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا