ترغب بنشر مسار تعليمي؟ اضغط هنا

A convex polyhedron $P$ is $k$-equiprojective if all of its orthogonal projections, i.e., shadows, except those parallel to the faces of $P$ are $k$-gon for some fixed value of $k$. Since 1968, it is an open problem to construct all equiprojective po lyhedra. Recently, Hasan and Lubiw [CGTA 40(2):148-155, 2008] have given a characterization of equiprojective polyhedra. Based on their characterization, in this paper we discover some new equiprojective polyhedra by cutting and gluing existing polyhedra.
Sorting a Permutation by Transpositions (SPbT) is an important problem in Bioinformtics. In this paper, we improve the running time of the best known approximation algorithm for SPbT. We use the permutation tree data structure of Feng and Zhu and imp rove the running time of the 1.375 Approximation Algorithm for SPbT of Elias and Hartman to $O(nlog n)$. The previous running time of EH algorithm was $O(n^2)$.
Given a convex polyhedron $P$ of $n$ vertices inside a sphere $Q$, we give an $O(n^3)$-time algorithm that cuts $P$ out of $Q$ by using guillotine cuts and has cutting cost $O((log n)^2)$ times the optimal.
In this paper we study several variations of the emph{pancake flipping problem}, which is also well known as the problem of emph{sorting by prefix reversals}. We consider the variations in the sorting process by adding with prefix reversals other sim ilar operations such as prefix transpositions and prefix transreversals. These type of sorting problems have applications in interconnection networks and computational biology. We first study the problem of sorting unsigned permutations by prefix reversals and prefix transpositions and present a 3-approximation algorithm for this problem. Then we give a 2-approximation algorithm for sorting by prefix reversals and prefix transreversals. We also provide a 3-approximation algorithm for sorting by prefix reversals and prefix transpositions where the operations are always applied at the unsorted suffix of the permutation. We further analyze the problem in more practical way and show quantitatively how approximation ratios of our algorithms improve with the increase of number of prefix reversals applied by optimal algorithms. Finally, we present experimental results to support our analysis.
A classic theorem by Steinitz states that a graph G is realizable by a convex polyhedron if and only if G is 3-connected planar. Zonohedra are an important subclass of convex polyhedra having the property that the faces of a zonohedron are parallelog rams and are in parallel pairs. In this paper we give characterization of graphs of zonohedra. We also give a linear time algorithm to recognize such a graph. In our quest for finding the algorithm, we prove that in a zonohedron P both the number of zones and the number of faces in each zone is O(square root{n}), where n is the number of vertices of P.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا