ترغب بنشر مسار تعليمي؟ اضغط هنا

The RAVE survey, combined with proper motions and distance estimates, can be used to study in detail stellar kinematics in the extended solar neighbourhood (solar suburb). Using the red clump, we examine the mean velocity components in 3D between an R of 6 and 10 kpc and a Z of -2 to 2 kpc, concentrating on North-South differences. Simple parametric fits to the R, Z trends for VPHI and the velocity dispersions are presented. We confirm the recently discovered gradient in mean Galactocentric radial velocity, VR, finding that the gradient is more marked below the plane, with a Z gradient also present. The vertical velocity, VZ, also shows clear structure, with indications of a rarefaction-compression pattern, suggestive of wave-like behaviour. We perform a rigorous error analysis, tracing sources of both systematic and random errors. We confirm the North-South differences in VR and VZ along the line-of-sight, with the VR estimated independent of the proper motions. The complex three-dimensional structure of velocity space presents challenges for future modelling of the Galactic disk, with the Galactic bar, spiral arms and excitation of wave-like structures all probably playing a role.
We identify a new, nearby (0.5 < d < 10 kpc) stream in data from the RAdial Velocity Experiment (RAVE). As the majority of stars in the stream lie in the constellation of Aquarius we name it the Aquarius Stream. We identify 15 members of the stream l ying between 30 < l < 75 and -70< b <-50, with heliocentric line-of-sight velocities V_los~-200 km/s. The members are outliers in the radial velocity distribution, and the overdensity is statistically significant when compared to mock samples created with both the Besanc{c}on Galaxy model and newly-developed code Galaxia. The metallicity distribution function and isochrone fit in the log g - T_eff plane suggest the stream consists of a 10 Gyr old population with [m/H]~-1.0. We explore relations to other streams and substructures, finding the stream cannot be identified with known structures: it is a new, nearby substructure in the Galaxys halo. Using a simple dynamical model of a dissolving satellite galaxy we account for the localization of the stream. We find that the stream is dynamically young and therefore likely the debris of a recently disrupted dwarf galaxy or globular cluster. The Aquarius stream is thus a specimen of ongoing hierarchical Galaxy formation, rare for being right in the solar suburb.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا