ترغب بنشر مسار تعليمي؟ اضغط هنا

Fuchsian groups with a modular embedding have the richest arithmetic properties among non-arithmetic Fuchsian groups. But they are very rare, all known examples being related either to triangle groups or to Teichmueller curves. In Part I of this pa per we study the arithmetic properties of the modular embedding and develop from scratch a theory of twisted modular forms for Fuchsian groups with a modular embedding, proving dimension formulas, coefficient growth estimates and differential equations. In Part II we provide a modular proof for an Apery-like integrality statement for solutions of Picard-Fuchs equations. We illustrate the theory on a worked example, giving explicit Fourier expansions of twisted modular forms and the equation of a Teichmueller curve in a Hilbert modular surface. In Part III we show that genus two Teichmueller curves are cut out in Hilbert modular surfaces by a product of theta derivatives. We rederive most of the known properties of those Teichmueller curves from this viewpoint, without using the theory of flat surfaces. As a consequence we give the modular embeddings for all genus two Teichmueller curves and prove that the Fourier developments of their twisted modular forms are algebraic up to one transcendental scaling constant. Moreover, we prove that Bainbridges compactification of Hilbert modular surfaces is toroidal. The strategy to compactify can be expressed using continued fractions and resembles Hirzebruchs in form, but every detail is different.
We prove that the moduli space of compact genus three Riemann surfaces contains only finitely many algebraically primitive Teichmueller curves. For the stratum consisting of holomorphic one-forms in genus three with a single zero, our approach to fin iteness uses the Harder-Narasimhan filtration of the Hodge bundle over a Teichmueller curve to obtain new information on the locations of the zeros of eigenforms. By passing to the boundary of moduli space, this gives explicit constraints on the cusps of Teichmueller curves in terms of cross-ratios of six points on a projective line. These constraints are akin to those that appear in Zilber and Pinks conjectures on unlikely intersections in diophantine geometry. However, in our case one is lead naturally to the intersection of a surface with a family of codimension two algebraic subgroups of $G_m^n times G_a^n$ (rather than the more standard $G_m^n$). The ambient algebraic group lies outside the scope of Zilbers Conjecture but we are nonetheless able to prove a sufficiently strong height bound. For the generic stratum in genus three, we obtain global torsion order bounds through a computer search for subtori of a codimension-two subvariety of $G_m^9$. These torsion bounds together with new bounds for the moduli of horizontal cylinders in terms of torsion orders yields finiteness in this stratum. The intermediate strata are handled with a mix of these techniques.
Shimura curves on Shimura surfaces have been a candidate for counterexamples to the bounded negativity conjecture. We prove that they do not serve this purpose: there are only finitely many whose self-intersection number lies below a given bound. P reviously, this result has been shown in [BHK+13] for compact Hilbert modular surfaces using the Bogomolov-Miyaoka-Yau inequality. Our approach uses equidistribution and works uniformly for all Shimura surfaces.
69 - Martin Moeller 2011
Algebraic curves in Hilbert modular surfaces that are totally geodesic for the Kobayashi metric have very interesting geometric and arithmetic properties, e.g. they are rigid. There are very few methods known to construct such algebraic geodesics tha t we call Kobayashi curves. We give an explicit way of constructing Kobayashi curves using determinants of derivatives of theta functions. This construction also allows to calculate the Euler characteristics of the Teichmueller curves constructed by McMullen using Prym covers.
We prove that the generic point of a Hilbert modular four-fold is not a Jacobian. The proof uses degeneration techniques and is independent of properties of the mapping class group used in preceding papers on locally symmetric subvarieties of the mod uli space of abelian varieties contained in the Schottky locus.
We describe globally nilpotent differential operators of rank 2 defined over a number field whose monodromy group is a nonarithmetic Fuchsian group. We show that these differential operators have an S-integral solution. These differential operators a re naturally associated with Teichmueller curves in genus 2. They are counterexamples to conjectures by Chudnovsky--Chudnovsky and Dwork. We also determine the field of moduli of primitive Teichmueller curves in genus 2, and an explicit equation in some cases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا