ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum information can be stored in micromechanical resonators, encoded as quanta of vibration known as phonons. The vibrational motion is then restricted to the stationary eigenmodes of the resonator, which thus serves as local storage for phonons. In contrast, we couple propagating phonons to an artificial atom in the quantum regime, and reproduce findings from quantum optics with sound taking over the role of light. Our results highlight the similarities between phonons and photons, but also point to new opportunities arising from the unique features of quantum mechanical sound. The low propagation speed of phonons should enable new dynamic schemes for processing quantum information, and the short wavelength allows regimes of atomic physics to be explored which cannot be reached in photonic systems.
Measurements of the temperature and bias dependence of Single Electron Transistors (SETs) in a dilution refrigerator show that charge noise increases linearly with refrigerator temperature above a voltage-dependent threshold temperature, and that its low temperature saturation is due to SET self-heating. We show further that the two-level fluctuators responsible for charge noise are in strong thermal contact with the electrons in the SET, which can be at a much higher temperature than the substrate. We suggest that the noise is caused by electrons tunneling between the SET metal and nearby potential wells.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا