ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure, and the disintegration of the whole white dwarf. It is usuall y thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and our suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. I then turn to possible observational tests, in particular those that test the absence or presence of electron captures during the burning.
The most massive neutron stars constrain the behavior of ultra-dense matter, with larger masses possible only for increasingly stiff equations of state. Here, we present evidence that the black widow pulsar, PSR B1957+20, has a high mass. We took spe ctra of its strongly irradiated companion and found an observed radial-velocity amplitude of K_obs=324+/-3 km/s. Correcting this for the fact that, due to the irradiation, the center of light lies inward relative to the center of mass, we infer a true radial-velocity amplitude of K_2=353+/-4 km/s and a mass ratio q=M_PSR/M_2=69.2+/-0.8. Combined with the inclination i=65+/-2 deg inferred from models of the lightcurve, our best-fit pulsar mass is M_PSR=2.40+/-0.12 M_sun. We discuss possible systematic uncertainties, in particular in the lightcurve modeling. Taking an upper limit of i<85 deg based on the absence of radio eclipses at high frequency, combined with a conservative lower-limit to the motion of the center of mass, K_2>343 km/s (q>67.3), we infer a lower limit to the pulsar mass of M_PSR>1.66 M_sun.
Type Ia supernovae are generally thought to be due to the thermonuclear explosions of carbon-oxygen white dwarfs with masses near the Chandrasekhar mass. This scenario, however, has two long-standing problems. First, the explosions do not naturally p roduce the correct mix of elements, but have to be finely tuned to proceed from sub-sonic deflagration to super-sonic detonation. Second, population models and observations give formation rates of near-Chandrasekhar white dwarfs that are far too small. Here, we suggest that type Ia supernovae instead result from mergers of roughly equal-mass carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. Numerical studies of such mergers have shown that the remnants consist of rapidly rotating cores that contain most of the mass and are hottest in the center, surrounded by dense, small disks. We argue that the disks accrete quickly, and that the resulting compressional heating likely leads to central carbon ignition. This ignition occurs at densities for which pure detonations lead to events similar to type Ia supernovae. With this merger scenario, we can understand the type Ia rates, and have plausible reasons for the observed range in luminosity and for the bias of more luminous supernovae towards younger populations. We speculate that explosions of white dwarfs slowly brought to the Chandrasekhar limit---which should also occur---are responsible for some of the atypical type Ia supernovae.
80 - S. R. Kulkarni 2010
SDSS 1257+5428 is a white dwarf in a close orbit with a companion that has been suggested to be a neutron star. If so, it hosts the closest known neutron star, and its existence implies a great abundance of similar systems and a rate of white-dwarf n eutron-star mergers similar to that of the type Ia supernova rate. Here, we present high signal-to-noise spectra of SDSS 1257+5428, which confirm an independent finding that the system is in fact composed of two white dwarfs, one relatively cool and with low mass, and the other hotter and more massive. With this, the demographics and merger rate are no longer puzzling (various factors combine to lower the latter by more than two orders of magnitude). We show that the spectra are fit well with a combination of two hydrogen model atmospheres, as long as the lines of the higher-gravity component are broadened significantly relative to what is expected from just pressure broadening. Interpreting this additional broadening as due to rotation, the inferred spin period is short, about 1 minute. Similarly rapid rotation is only seen in accreting white dwarfs that are magnetic; empirically, it appears that in non-magnetized white dwarfs, accreted angular momentum is lost by nova explosions before it can be transferred to the white dwarf. This suggests that the massive white dwarf in SDSS 1257+5428 is magnetic as well, with B~10^5 G. Alternatively, the broadening seen in the spectral lines could be due to a stronger magnetic field, of ~10^6 G. The two models could be distinguished by further observations.
Among the initial results from Kepler were two striking lightcurves, for KOI 74 and KOI 81, in which the relative depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its stellar host. That r esult became particularly intriguing because a substellar mass had been derived for the secondary in KOI 74, which would make the high temperature challenging to explain; in KOI 81, the mass range for the companion was also reported to be consistent with a substellar object. We re-analyze the Kepler data and demonstrate that both companions are likely to be white dwarfs. We also find that the photometric data for KOI 74 show a modulation in brightness as the more luminous star orbits, due to Doppler boosting. The magnitude of the effect is sufficiently large that we can use it to infer a radial velocity amplitude accurate to 1 km/s. As far as we are aware, this is the first time a radial-velocity curve has been measured photometrically. Combining our velocity amplitude with the inclination and primary mass derived from the eclipses and primary spectral type, we infer a secondary mass of 0.22+/-0.03 Msun. We use our estimates to consider the likely evolutionary paths and mass-transfer episodes of these binary systems.
The Guitar Nebula is an H-alpha nebula produced by the interaction of the relativistic wind of a very fast pulsar, PSR B2224+65, with the interstellar medium. It consists of a ram-pressure confined bow shock near its head and a series of semi-circula r bubbles further behind, the two largest of which form the body of the Guitar. We present a scenario in which this peculiar morphology is due to instabilities in the back flow from the pulsar bow shock. From simulations, these back flows appear similar to jets and their kinetic energy is a large fraction of the total energy in the pulsars relativistic wind. We suggest that, like jets, these flows become unstable some distance down-stream, leading to rapid dissipation of the kinetic energy into heat, and the formation of an expanding bubble. We show that in this scenario the sizes, velocities, and surface brightnesses of the bubbles depend mostly on observables, and that they match roughly what is seen for the Guitar. Similar instabilities may account for features seen in other bow shocks.
RX J1856.5-3754 is the X-ray brightest among the nearby isolated neutron stars. Its X-ray spectrum is thermal, and is reproduced remarkably well by a black-body, but its interpretation has remained puzzling. One reason is that the source did not exhi bit pulsations, and hence a magnetic field strength--vital input to atmosphere models--could not be estimated. Recently, however, very weak pulsations were discovered. Here, we analyze these in detail, using all available data from the XMM-Newton and Chandra X-ray observatories. From frequency measurements, we set a 2-sigma upper limit to the frequency derivative of dot u<1.3e-14 Hz/s. Trying possible phase-connected timing solutions, we find that one solution is far more likely than the others, and we infer a most probable value of dot u=(-5.98+/-0.14)e-16 Hz/s. The inferred magnetic field strength is 1.5e13 G, comparable to what was found for similar neutron stars. From models, the field seems too strong to be consistent with the absence of spectral features for non-condensed atmospheres. It is sufficiently strong, however, that the surface could be condensed, but only if it is consists of heavy elements like iron. Our measurements imply a characteristic age of about 4 Myr. This is longer than the cooling and kinematic ages, as was found for similar objects, but at almost a factor ten, the discrepancy is more extreme. A puzzle raised by our measurement is that the implied rotational energy loss rate of about 3e30 erg/s is orders of magnitude smaller than what was inferred from the H-alpha nebula surrounding the source.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا