ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope ACS observations of the Local Group dE galaxies NGC 147 and NGC 185. The resulting F606W and F814W color-magnitude diagrams are the first t o reach below the main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located ~1.5 effective radii from the galaxy center to avoid photometric crowding. While our ACS pointings in both dEs show unambiguous evidence for old and intermediate age stars, the mean age in NGC 147 is ~ 4 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyrs ago (z~5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 field more than12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr. Star formation ceased in both ACS fields at least 3 Gyr ago. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago and a strong metallicity gradient with radius. We suggest that the orbit of NGC 185 has a larger pericenter as compared to NGC 147, allowing it to preserve radial gradients and maintain a small central reservoir of recycled gas. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.
50 - N. Ho , M. Geha , E. Tollerud 2014
We present global metallicity properties, metallicity distribution functions (MDFs) and radial metallicity profiles for the six most luminous M31 dwarf galaxy satellites: M32, NGC 205, NGC 185, NGC 147, Andromeda VII, and Andromeda II. The results pr esented are the first spectroscopic MDFs for dwarf systems surrounding a host galaxy other than the Milky Way. Our sample consists of individual metallicity measurements for 1243 red giant branch (RGB) member stars spread across these six systems. We determine metallicities based on the strength of the Ca II triplet lines using the empirical calibration of Carrera et al.(2013) which is calibrated over the metallicity range -4 < [Fe/H] <+0.5. We find that these M31 satellites lie on the same luminosity-metallicity relationship as the Milky Way dwarf satellites. We do not find a trend between the internal metallicity spread and galaxy luminosity, contrary to previous studies. The MDF widths of And II and And VII are similar to the MW dwarfs of comparable luminosity, however, our four brightest M31 dwarf are more luminous than any of the MW dwarf spheroidals and have broader MDFs. The MDFs of our six M31 dwarfs are consistent with the leaky box model of chemical evolution, although our metallicity errors allow a wide range of evolution models. We find a significant radial gradient in metallicity in only two of our six systems, NGC 185 and Andromeda II, and flat radial metallicity gradients in the rest of our sample with no observed correlation between rotational support and radial metallicity gradients. While the average properties and radial trends of the M31 dwarf galaxies agree with MW counterparts at similar luminosity, the detailed MDFs are different, particularly at the metal-rich end.
We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep HST/ACS imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M_V = -6.2, -5.5), metal-poo r (<[Fe/H]>= -2.4, -2.5) systems that have old stellar populations (> 11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52 - 0.77 Msun, the IMF is best fit by a power-law slope of alpha = 1.2^{+0.4}_{-0.5} for Hercules and alpha = 1.3 +/- 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter IMF (alpha=2.35) at the 5.8-sigma level, and a Kroupa IMF (alpha=2.3 above 0.5 Msun) at 5.4-sigma level. We simultaneously fit for the binary fraction, finding f_binary = 0.47^{+0.16}_{-0.14} for Hercules, and 0.47^{+0.37}_{-0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5 - 0.8 Msun, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.
44 - M. Geha , M. Blanton , R. Yan 2012
We demonstrate that dwarf galaxies (10^7 < M_stellar < 10^9 Msun) with no active star formation are extremely rare (<0.06%) in the field. Our sample is based on the NASA-Sloan Atlas which is a re-analysis of the Sloan Digital Sky Survey Data Release 8. We examine the relative number of quenched versus star forming dwarf galaxies, defining quenched galaxies as having no Halpha emission (EW_Halpha < 2 AA) and a strong 4000AA-break. The fraction of quenched dwarf galaxies decreases rapidly with increasing distance from a massive host, leveling off for distances beyond 1.5 Mpc. We define galaxies beyond 1.5 Mpc of a massive host galaxy to be in the field. We demonstrate that there is a stellar mass threshold of M_stellar < 1.0x10^9 Msun below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1-sigma upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0x10^9 Msun, ending star-formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا