ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective complexity measures the information content of the regularities of an object. It has been introduced by M. Gell-Mann and S. Lloyd to avoid some of the disadvantages of Kolmogorov complexity, also known as algorithmic information content. In this paper, we give a precise formal definition of effective complexity and rigorous proofs of its basic properties. In particular, we show that incompressible binary strings are effectively simple, and we prove the existence of strings that have effective complexity close to their lengths. Furthermore, we show that effective complexity is related to Bennetts logical depth: If the effective complexity of a string $x$ exceeds a certain explicit threshold then that string must have astronomically large depth; otherwise, the depth can be arbitrarily small.
We study the dynamics of Rydberg ions trapped in a linear Paul trap, and discuss the properties of ionic Rydberg states in the presence of the static and time-dependent electric fields constituting the trap. The interactions in a system of many ions are investigated and coupled equations of the internal electronic states and the external oscillator modes of a linear ion chain are derived. We show that strong dipole-dipole interactions among the ions can be achieved by microwave dressing fields. Using low-angular momentum states with large quantum defect the internal dynamics can be mapped onto an effective spin model of a pair of dressed Rydberg states that describes the dynamics of Rydberg excitations in the ion crystal. We demonstrate that excitation transfer through the ion chain can be achieved on a nanosecond timescale and discuss the implementation of a fast two-qubit gate in the ion chain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا