ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - Markus Heydenreich 2009
We consider a long-range version of self-avoiding walk in dimension $d > 2(alpha wedge 2)$, where $d$ denotes dimension and $alpha$ the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to Brownian moti on for $alpha ge 2$, and to $alpha$-stable Levy motion for $alpha < 2$. This complements results by Slade (1988), who proves convergence to Brownian motion for nearest-neighbor self-avoiding walk in high dimension.
For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (2007). This improvement finally settles a conjecture by Aizenman (1997) about the role of boundary conditions in critical high-dimensional percolation, and it is a key step in deriving further properties of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (2008) implies appropriate bounds on diameter and mixing time of the largest clusters. We further prove that the volume bounds apply also to any finite number of the largest clusters. The main conclusion of the paper is that the behavior of critical percolation on the high-dimensional torus is the same as for critical Erdos-Renyi random graphs. In this updated version we incorporate an erratum to be published in a forthcoming issue of Probab. Theory Relat. Fields. This results in a modification of Theorem 1.2 as well as Proposition 3.1.
We consider self-avoiding walk, percolation and the Ising model with long and finite range. By means of the lace expansion we prove mean-field behavior for these models if $d>2(alphawedge2)$ for self-avoiding walk and the Ising model, and $d>3(alphaw edge2)$ for percolation, where $d$ denotes the dimension and $alpha$ the power-law decay exponent of the coupling function. We provide a simplified analysis of the lace expansion based on the trigonometric approach in Borgs et al. (2007)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا