ترغب بنشر مسار تعليمي؟ اضغط هنا

74 - T. Finger , K. Binder , Y. Sidis 2014
Magnetic order and excitations in multiferroic DyMnO3 were studied by neutron scattering experiments using a single crystal prepared with enriched 162Dy isotope. The ordering of Mn moments exhibits pronounced hysteresis arising from the interplay bet ween Mn and Dy magnetism which possesses a strong impact on the ferroelectric polarization. The magnon dispersion resembles that reported for TbMnO3. We identify the excitations at the magnetic zone center and near the zone boundary in the b direction, which can possess electromagnon character. The lowest frequency of the zone-center magnons is in good agreement with a signal in a recent optical measurement so that this mode can be identified as the electromagnon coupled by the same Dzyaloshinski-Moriya interaction as the static multiferroic phase.
We have studied the magnetic ordering in Na doped BaFe$_2$As$_2$ by unpolarized and polarized neutron diffraction using single crystals. Unlike previously studied FeAs-based compounds that magnetically order, Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ exhibits two successive magnetic transitions: For x=0.35 upon cooling magnetic order occurs at $sim$70 K with in-plane magnetic moments being arranged as in pure or Ni, Co and K-doped BaFe$_2$As$_2$ samples. At a temperature of $sim$46 K a second phase transition occurs, which the single-crystal neutron diffraction experiments can unambiguously identify as a spin reorientation. At low temperatures, the ordered magnetic moments in Ba$_{0.65}$Na$_{0.35}$Fe$_2$As$_2$ point along the $c$ direction. Magnetic correlations in these materials cannot be considered as Ising like, and spin-orbit coupling must be included in a quantitative theory.
Combining macroscopic and diffraction methods we have studied the electric, magnetic and struc- tural properties of RE_(1-x)Ca_xTiO_3 (RE=Y, Er, Lu) focusing on the concentration range near the metal-insulator transition. The insulating phase, which is stabilized by a smaller rare-earth ionic ra- dius, exhibits charge order with a predominant occupation of the dxy orbital. The charge and orbital ordering explains the broad stability range of the insulating state in RE_(1-x)Ca_xTiO_3 with smaller rare-earth ions. The strong modulation of the Ti-O bond distances indicates sizeable modulation of the electric charge.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا