ترغب بنشر مسار تعليمي؟ اضغط هنا

The polarization signatures of the blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, sometimes large (> 180^o) polarization angle swings are observed. We suggest that su ch p henomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change of its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.
197 - Markus Boettcher 2009
The MAGIC collaboration recently reported the detection of the quasar 3C279 at > 100 GeV gamma-ray energies. Here we present simultaneous optical (BVRI) and X-ray (RXTE PCA) data from the day of the VHE detection and discuss the implications of the s nap-shot spectral energy distribution for jet models of blazars. A one-zone synchrotron-self-Compton origin of the entire SED, including the VHE gamma-ray emission can be ruled out. The VHE emission could, in principle, be interpreted as Compton upscattering of external radiation (e.g., from the broad-line regions). However, such an interpretation would require either an unusually low magnetic field of B ~ 0.03 G or an unrealistically high Doppler factor of Gamma ~ 140. In addition, such a model fails to reproduce the observed X-ray flux. This as well as the lack of correlated variability in the optical with the VHE gamma-ray emission and the substantial gamma-gamma opacity of the BLR radiation field to VHE gamma-rays suggests a multi-zone model. In particular, an SSC model with an emission region far outside the BLR reproduces the simultaneous X-ray -- VHE gamma-ray spectrum of 3C279. Alternatively, a hadronic model is capable of reproducing the observed SED of 3C279 reasonably well. However, the hadronic model requires a rather extreme jet power of L_j ~ 10^{49} erg s^{-1}, compared to a requirement of L_j ~ 2 X 10^{47} erg s^{-1} for a multi-zone leptonic model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا