ترغب بنشر مسار تعليمي؟ اضغط هنا

143 - S. Balik , A.L. Win , M.D. Havey 2013
We report an experimental study of near resonance light scattering on the $F = 1 rightarrow F = 0$ component of the $D_2$ line in atomic $^{87}Rb$. Experiments are performed on spatially bi-Gaussian ultracold gas samples having peak densities ranging from about $5 cdot 10^{12} - 5 cdot 10^{13}$ atoms/cm$^{3}$ and for a range of resonance saturation parameters and detunings from atomic resonance. Time resolution of the scattered light intensity reveals dynamics of multiple light scattering, optical pumping, and saturation effects. The experimental results in steady-state are compared qualitatively with theoretical models of the light scattering process. The steady-state line shape of the excitation spectrum is in good qualitative agreement with these models.
We show that coherent multiple light scattering, or diffuse light propagation, in a disordered atomic medium, prepared at ultra-low temperatures, can be be effectively delayed in the presence of a strong control field initiating a stimulated Raman pr ocess. On a relatively short time scale, when the atomic system can preserve its configuration and effects of atomic motion can be ignored, the scattered signal pulse, diffusely propagating via multiple coherent scattering through the medium, can be stored in the spin subsystem through its stimulated Raman-type conversion into spin coherence. We demonstrate how this mechanism, potentially interesting for developing quantum memories, would work for the example of a coherent light pulse propagating through an alkali-metal atomic vapor under typical conditions attainable in experiments with ultracold atoms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا