ترغب بنشر مسار تعليمي؟ اضغط هنا

The Chromomagnetic operator (CMO) mixes with a large number of operators under renormalization. We identify which operators can mix with the CMO, at the quantum level. Even in dimensional regularization (DR), which has the simplest mixing pattern, th e CMO mixes with a total of 9 other operators, forming a basis of dimension-five, Lorentz scalar operators with the same flavor content as the CMO. Among them, there are also gauge noninvariant operators; these are BRST invariant and vanish by the equations of motion, as required by renormalization theory. On the other hand using a lattice regularization further operators with $d leq 5$ will mix; choosing the lattice action in a manner as to preserve certain discrete symmetries, a minimul set of 3 additional operators (all with $d<5$) will appear. In order to compute all relevant mixing coefficients, we calculate the quark-antiquark (2-pt) and the quark-antiquark-gluon (3-pt) Greens functions of the CMO at nonzero quark masses. These calculations were performed in the continuum (dimensional regularization) and on the lattice using the maximally twisted mass fermion action and the Symanzik improved gluon action. In parallel, non-perturbative measurements of the $K-pi$ matrix element are being performed in simulations with 4 dynamical ($N_f = 2+1+1$) twisted mass fermions and the Iwasaki improved gluon action.
We calculate the fermion propagator and the quark-antiquark Greens functions for a complete set of ultralocal fermion bilinears, ${{cal O}_Gamma}$ [$Gamma$: scalar (S), pseudoscalar (P), vector (V), axial (A) and tensor (T)], using perturbation theor y up to one-loop and to lowest order in the lattice spacing. We employ the staggered action for fermions and the Symanzik Improved action for gluons. From our calculations we determine the renormalization functions for the quark field and for all ultralocal taste-singlet bilinear operators. The novel aspect of our calculations is that the gluon links which appear both in the fermion action and in the definition of the bilinears have been improved by applying a stout smearing procedure up to two times, iteratively. Compared to most other improved formulations of staggered fermions, the above action, as well as the HISQ action, lead to smaller taste violating effects. The renormalization functions are presented in the RI$$ scheme; the dependence on all stout parameters, as well as on the coupling constant, the number of colors, the lattice spacing, the gauge fixing parameter and the renormalization scale, is shown explicitly. We apply our results to a nonperturbative study of the magnetic susceptibility of QCD at zero and finite temperature. In particular, we evaluate the tensor coefficient, $tau$, which is relevant to the anomalous magnetic moment of the muon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا