ترغب بنشر مسار تعليمي؟ اضغط هنا

90 - Mario Hamuy 2013
The discovery of acceleration and dark energy arguably constitutes the most revolutionary discovery in astrophysics in recent years. Cerro Tololo Inter-American Observatory (CTIO) played a key role in this amazing discovery through three systematic s upernova surveys organized by staff astronomers: the Tololo Supernova Program (1986-2000), the Calan/Tololo Project (1989-1993), and the High-Z Supernova Search Team (1994-1998). CTIOs state of the art instruments also were fundamental in the independent discovery of acceleration by the Supernova Cosmology Project (1992-1999). Here I summarize the work on supernovae carried out from CTIO that led to the discovery of acceleration and dark energy and provide a brief historical summary on the use of Type Ia supernovae in cosmology in order to provide context for the CTIO contribution.
82 - Mario Hamuy 2011
The Nobel Prize in Physics 2011 has just been awarded to three astronomers: Saul Perlmutter, Brian Schmidt, and Adam Riess, for their amazing discovery of the accelerating expansion of the Universe. Without diminishing the achievement of our communit ys laureates, here I elaborate on the role of the C&T project in this discovery.
Optical and near-infrared photometry and optical spectroscopy are reported for SN 2003bg, starting a few days after explosion and extending for a period of more than 300 days. Our early-time spectra reveal the presence of broad, high-velocity Balmer lines. The nebular-phase spectra, on the other hand, show a remarkable resemblance to those of Type Ib/c supernovae, without clear evidence for hydrogen. Near maximum brightness SN 2003bg displayed a bolometric luminosity comparable to that of other Type I hypernovae unrelated to gamma-ray bursts, implying a rather normal amount of 56Ni production (0.1-0.2 Msun) compared with other such objects. The bolometric light curve of SN 2003bg, on the other hand, is remarkably broad, thus suggesting a relatively large progenitor mass at the moment of explosion. These observations, together with the large value of the kinetic energy of expansion established in the accompanying paper (Mazzali et al. 2009), suggest that SN 2003bg can be regarded as a Type IIb hypernova.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا