ترغب بنشر مسار تعليمي؟ اضغط هنا

We have used the ACS and WFC3 cameras on board HST to resolve stars in the halo of the nearest giant elliptical (gE) galaxy NGC 5128 out to a projected distance of 140 kpc (25 effective radii, Reff) along the major axis and 90 kpc (16 Reff) along the minor axis. This dataset provides an unprecedented radial coverage of the stellar halo properties in any gE galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128, even in our most distant fields. The star counts demonstrate increasing flattening of the outer halo, which is elongated along the major axis of the galaxy. The V-I colors of the red giants enable us to measure the metallicity distribution in each field and so map the gradient out to ~16 Reff from the galaxy center along the major axis. A median metallicity is obtained even for the outermost fields along both axes. We observe a smooth transition from a metal-rich ([M/H]~0.0) inner galaxy to lower metallicity in the outer halo, with the metallicity gradient slope along the major axis of $Delta$[M/H]/$Delta$ R=-0.0054 $pm$ 0.0006 dex/kpc. In the outer halo, beyond ~10 Reff, the number density profile follows a power law, but also significant field-to-field metallicity and star count variations are detected. The metal-rich component dominates in all observed fields, and the median metallicity is [M/H]>-1 dex in all fields.
56 - M. Rejkuba 2012
Globular clusters are among the first objects used to establish the distance scale of the Universe. In the 1970-ies it has been recognized that the differential magnitude distribution of old globular clusters is very similar in different galaxies pre senting a peak at M_V ~ -7.5. This peak magnitude of the so-called Globular Cluster Luminosity Function has been then established as a secondary distance indicator. The intrinsic accuracy of the method has been estimated to be of the order of ~0.2 mag, competitive with other distance determination methods. Lately the study of the Globular Cluster Systems has been used more as a tool for galaxy formation and evolution, and less so for distance determinations. Nevertheless, the collection of homogeneous and large datasets with the ACS on board HST presented new insights on the usefulness of the Globular Cluster Luminosity Function as distance indicator. I discuss here recent results based on observational and theoretical studies, which show that this distance indicator depends on complex physics of the cluster formation and dynamical evolution, and thus can have dependencies on Hubble type, environment and dynamical history of the host galaxy. While the corrections are often relatively small, they can amount to important systematic differences that make the Globular Cluster Luminosity Function a less accurate distance indicator with respect to some other standard candles.
80 - M. Rejkuba 2010
NGC 5128 (Centaurus A) is, at the distance of just 3.8 Mpc, the nearest easily observable giant elliptical galaxy. Therefore it is the best target to investigate the early star formation history of an elliptical galaxy. Our aims are to establish when the oldest stars formed in NGC 5128, and whether this galaxy formed stars over a long period. We compare simulated colour-magnitude diagrams with the deep ACS/HST photometry. We find that that the observed colour-magnitude diagram can be reproduced satisfactorily only by simulations that have the bulk of the stars with ages in excess of ~10 Gyr, and that the alpha-enhanced models fit the data much better than the solar scaled ones. Data are not consistent with extended star formation over more than 3-4 Gyr. Two burst models, with 70-80% of the stars formed 12+/-1 Gyr ago and with 20-30% younger contribution with 2-4 Gyr old stars provide the best agreement with the data. The old component spans the whole metallicity range of the models (Z=0.0001-0.04), while for the young component the best fitting models indicate higher minimum metallicity (~1/10 - 1/4 Z_sun). The bulk of the halo stars in NGC5128 must have formed at redshift z>=2 and the chemical enrichment was very fast, reaching solar or even twice-solar metallicity already for the ~11-12 Gyr old population. The minor young component, adding ~20-30% of the stars to the halo, and contributing less than 10% of the mass, may have resulted from a later star formation event ~2-4 Gyr ago. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا