ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attache d to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
The two-type Richardson model describes the growth of two competing infections on $mathbb{Z}^d$ and the main question is whether both infection types can simultaneously grow to occupy infinite parts of $mathbb{Z}^d$. For bounded initial configuration s, this has been thoroughly studied. In this paper, an unbounded initial configuration consisting of points $x=(x_1,...,x_d)$ in the hyperplane $mathcal{H}={xinmathbb{Z}^d:x_1=0}$ is considered. It is shown that, starting from a configuration where all points in $mathcal{H} {mathbf{0}}$ are type 1 infected and the origin $mathbf{0}$ is type 2 infected, there is a positive probability for the type 2 infection to grow unboundedly if and only if it has a strictly larger intensity than the type 1 infection. If, instead, the initial type 1 infection is restricted to the negative $x_1$-axis, it is shown that the type 2 infection at the origin can also grow unboundedly when the infection types have the same intensity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا