ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent progresses on the relativistic modeling of neutrino-nucleus reactions are presented and the results are compared with high precision experimental data in a wide energy range.
We study the excited states of the pairing Hamiltonian providing an expansion for their energy in the strong coupling limit. To assess the role of the pairing interaction we apply the formalism to the case of a heavy atomic nucleus. We show that only a few statistical moments of the level distribution are sufficient to yield an accurate estimate of the energy for not too small values of the coupling $G$ and we give the analytic expressions of the first four terms of the series. Further, we discuss the convergence radius $G_{rm sing}$ of the expansion showing that it strongly depends upon the details of the level distribution. Furthermore $G_{rm sing}$ is not related to the critical values of the coupling $G_{rm crit}$, which characterize the physics of the pairing Hamiltonian, since it can exist even in the absence of these critical points.
We compare the predictions of the SuperScaling model for charged current quasielastic muonic neutrino and antineutrino scattering from $^{12}$C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results t o different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti-)neutrino cross sections relevant for the $ u$STORM facility.
The one- and the two-particle propagators for an infinite non-interacting Fermi system are studied as functions of space-time coordinates. Their behaviour at the origin and in the asymptotic region is discussed, as is their scaling in the Fermi momen tum. Both propagators are shown to have a divergence at equal times. The impact of the interaction among the fermions on their momentum distribution, on their pair correlation function and, hence, on the Coulomb sum rule is explored using a phenomenological model. Finally the problem of how the confinement is reflected in the momentum distribution of the systems constituents is briefly addressed.
111 - Maria B. Barbaro 2009
An accurate description of the nuclear response functions for neutrino scattering in the Gev region is essential for the interpretation of present and future neutrino oscillation experiments. Due to the close similarity of electromagnetic and weak sc attering processes, we will review the status of the scaling approach and of relativistic modeling for the inclusive electron scattering response functions in the quasielastic and $Delta$-resonance regions. In particular, recent studies have been focused on scaling violations and the degree to which these imply modifications of existing predictions for neutrino reactions. We will discuss sources and magnitude of such violations, emphasizing similarities and differences between electron and neutrino reactions.
We suggest that superscaling in electroweak interactions with nuclei, namely the observation that the reduced electron-nucleus cross sections are to a large degree independent of the momentum transfer and of the nuclear species, can be used as a tool to obtain precise predictions for neutrino-nucleus cross sections in both charged and neutral current-induced processes.
We present a covariant extension of the relativistic Fermi gas model which incorporates correlation effects in nuclei. Within this model, inspired by the BCS descriptions of systems of fermions, we obtain the nuclear spectral function and from it the superscaling function for use in treating high-energy quasielastic electroweak processes. Interestingly, this model has the capability to yield the asymmetric tail seen in the experimental scaling function.
Using ideas from BCS descriptions of systems of fermions, a covariant extension of the relativistic Fermi gas model is presented as a way to incorporate correlation effects in nuclei. The model is developed for the BCS nuclear ground state and for fi nal states consisting of a single plane-wave nucleon plus a BCS recoiling daughter nucleus. The nuclear spectral function is obtained and from it the superscaling function for use in treating high-energy quasielastic electroweak processes. Interestingly, this model has the capability to yield the asymmetric tail seen in the experimental scaling function.
95 - M.B. Barbaro 2007
We present a unified relativistic approach to inclusive electron scattering based on the relativistic Fermi gas model and on a phenomenological extension of it which accounts for the superscaling behaviour of $(e,e)$ data. We present results in the $ Delta$ resonance region and in the highly inelastic domain and show some application to neutrino scattering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا