ترغب بنشر مسار تعليمي؟ اضغط هنا

A lattice QCD study of the strong decay width and coupling constant of decuplet baryons to an octet baryon - pion state is presented. The transfer matrix method is used to obtain the overlap of lattice states with decuplet baryon quantum numbers on t he one hand and octet baryon-pion quantum numbers on the other as an approximation to the matrix element of the corresponding transition. By making use of leading order effective field theory, the coupling constants, as well as the widths for the various decay channels are determined. The transitions studied are $ Delta to pi ,N$, $Sigma^* to Lambda,pi$, $Sigma^* to Sigma,pi$ and $Xi^* to Xi,pi$. We obtain results for two ensembles of $N_f=2+1$ dynamical fermion configurations, one using domain wall valence quarks on a staggered sea at a pion mass of $350,mathrm{MeV}$ and a box size of $3.4,mathrm{fm}$ and a second one using domain wall sea and valence quarks at pion mass $180,mathrm{MeV}$ and box size $4.5,mathrm{fm}$.
A method suitable for extracting resonance parameters of unstable baryons in lattice QCD is examined. The method is applied to the strong decay of the Delta to a pion-nucleon state, extracting the pi-N - Delta coupling constant and Delta decay width.
We present two examples of applications of the analytic continuation method for computing the hadronic vacuum polarization function in space- and time-like momentum regions. These examples are the Adler function and the leading order hadronic contrib ution to the muon anomalous magnetic moment. We comment on the feasibility of the analytic continuation method and provide an outlook for possible further applications.
A method suitable for extracting resonance parameters of unstable baryons in lattice QCD is examined. The method is applied to the strong decay of the Delta to a pion-nucleon state, extracting the pion-nucleon - Delta coupling constant and Delta decay width.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا