ترغب بنشر مسار تعليمي؟ اضغط هنا

These proceedings present recent results from transport-hydrodynamics-hybrid models for heavy ion collisions at relativistic energies. The main focus is on the absorption of (anti-)protons in the hadronic afterburner stage of the reaction, di-lepton production at SPS and heavy quark dynamics.
76 - Marcus Bleicher 2011
These proceedings summarize my plenary talk at Quark Matter 2011 with a focus on the future perspectives of the low energy programs at RHIC, FAIR, NICA and CERN.
49 - Gunnar Graf 2010
We present recent results on the production, spectra and elliptic flow of strange particles in dynamic simulations employing hadronic degrees of freedom and from recombination models. The main focus will be on the Ultra-relativistic Molecular Dynamic s (UrQMD) Boltzmann approach to relativistic heavy ion collisions and a hybrid approach with intermediate hydrodynamic evolution based on UrQMD (available for download as UrQMD v3.3). Compared to the standard binary collision approach, an enhancement of the strange particle particle yields is found in the hybrid approach due to the assumption of local equilibration. The production origins of the Phi-meson in the hybrid approach are studied in further detail. We also present results on the transverse momentum spectra of baryon to meson ratios of strange particles. Due to the approximate energy independent scaling of this ratio as a function of p_T we argue, that a maximum in these spectra may not be a unique sign for quark coalescence but can be understood in terms of flow and fragmentation.
We investigate a (3+1)-dimensional hydrodynamic expansion of the hot and dense system created in head-on collisions of Pb+Pb/Au+Au at beam energies from $5-200A$ GeV. An equation of state that incorporates a critical end point (CEP) in line with the lattice data is used. The necessary initial conditions for the hydrodynamic evolution are taken from a microscopic transport approach (UrQMD). We compare the properties of the initial state and the full hydrodynamical calculation with an isentropic expansion employing an initial state from a simple overlap model. We find that the specific entropy ($S/A$) from both initial conditions is very similar and only depends on the underlying equation of state. Using the chiral (hadronic) equation of state we investigate the expansion paths for both initial conditions. Defining a critical area around the critical point, we show at what beam energies one can expect to have a sizable fraction of the system close to the critical point. Finally, we emphasise the importance of the equation of state of strongly interacting matter, in the (experimental) search for the CEP.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا