ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise is the price to pay when trying to clone or amplify arbitrary quantum states. The quantum noise associated to linear phase-insensitive amplifiers can only be avoided by relaxing the requirement of a deterministic operation. Here we present the experimental realization of a probabilistic noiseless linear amplifier that is able to amplify coherent states at the highest level of effective gain and final state fidelity ever reached. Based on a sequence of photon addition and subtraction, and characterized by a significant amplification and low distortions, this high-fidelity amplification scheme may become an essential tool for quantum communications and metrology, by enhancing the discrimination between partially overlapping quantum states or by recovering the information transmitted over lossy channels.
We present the experimental realization of a scheme, based on single-photon interference, for implementing superpositions of distinct quantum operations. Its application to a thermal light field (a well-categorized classical entity) illustrates quant um superposition from a new standpoint and provides a direct and quantitative verification of the bosonic commutation relation between creation and annihilation operators. By shifting the focus towards operator superpositions, this result opens interesting alternative perspectives for manipulating quantum states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا