ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the long term evolution of a set of 22 bipolar active regions (ARs) in which the main photospheric polarities are seen to rotate one around the other during several solar rotations. We first show that differential rotation is not at the orig in of this large change in the tilt angle. A possible origin of this distortion is the nonlinear development of a kink-instability at the base of the convective zone; this would imply the formation of a non-planar flux tube which, while emerging across the photosphere, would show a rotation of its photospheric polarities as observed. A characteristic of the flux tubes deformed by this mechanism is that their magnetic twist and writhe should have the same sign. From the observed evolution of the tilt of the bipoles, we derive the sign of the writhe of the flux tube forming each AR; while we compute the sign of the twist from transverse field measurements. Comparing the handedness of the magnetic twist and writhe, we find that the presence of kink-unstable flux tubes is coherent with no more than 35% of the 20 cases for which the sign of the twist can be unambiguously determined. Since at most only a fraction of the tilt evolution can be explained by this process, we discuss the role that other mechanisms may play in the inferred deformation. We find that 36% of the 22 cases may result from the action of the Coriolis force as the flux tube travels through the convection zone. Furthermore, because several bipoles overpass in their rotation the mean toroidal (East-West) direction or rotate away from it, we propose that a possible explanation for the deformation of all these flux tubes may lie in the interaction with large-scale vortical motions of the plasma in the convection zone, including also photospheric or shallow sub-photospheric large scale flows.
We study the effect of the coronal background in the determination of the diameter of EUV loops, and we analyze the suitability of the procedure followed in a previous paper (Lopez Fuentes, Klimchuk & Demoulin 2006) for characterizing their expansion properties. For the analysis we create different synthetic loops and we place them on real backgrounds from data obtained with the Transition Region and Coronal Explorer (textit{TRACE}). We apply to these loops the same procedure followed in our previous works, and we compare the results with real loop observations. We demonstrate that the procedure allows us to distinguish constant width loops from loops that expand appreciably with height, as predicted by simple force-free field models. This holds even for loops near the resolution limit. The procedure can easily determine when loops are below resolution limit and therefore not reliably measured. We find that small-scale variations in the measured loop width are likely due to imperfections in the background subtraction. The greatest errors occur in especially narrow loops and in places where the background is especially bright relative to the loop. We stress, however, that these effects do not impact the ability to measure large-scale variations. The result that observed loops do not expand systematically with height is robust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا