ترغب بنشر مسار تعليمي؟ اضغط هنا

96 - Marc van der Sluys 2011
In this review, I give a summary of the history of our understanding of gravitational waves and how compact binaries were used to transform their status from mathematical artefact to physical reality. I also describe the types of compact (stellar) bi naries that LISA will observe as soon as it is switched on. Finally, the status and near future of LIGO, Virgo and GEO are discussed, as well as the expected detection rates for the Advanced detectors, and the accuracies with which binary parameters can be determined when BH/NS inspirals are detected.
We present basic properties of primary stars that initiate a common envelope (CE) in a binary, while on the giant branch. We use the population-synthesis code described in Politano et al. (2010) and follow the evolution of a population of binary star s up to the point where the primary fills its Roche lobe and initiates a CE. We then collect the properties of each system, in particular the donor mass and the binding energy of the donors envelope, which are important for the treatment of a CE. We find that for most CEs, the donor mass is sufficiently low to define the core-envelope boundary reasonably well. We compute the envelope-structure parameter {lambda_mathrm{env}} from the binding energy and compare its distribution to typical assumptions that are made in population-synthesis codes. We conclude that {lambda_mathrm{env}} varies appreciably and that the assumption of a constant value for this parameter results in typical errors of 20--50%. In addition, such an assumption may well result in the implicit assumption of unintended and/or unphysical values for the CE parameter {alpha_mathrm{CE}}. Finally, we discuss accurate existing analytic fits for the envelope binding energy, which make these oversimplified assumptions for {lambda_mathrm{env}}, and the use of {lambda_mathrm{env}} in general, unnecessary.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا