ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider general, steady, balanced flows of a commodity over a network where an instance of the network flow is characterized by edge flows and nodal potentials. Edge flows in and out of a node are assumed to be conserved, thus representing standa rd network flow relations. The remaining freedom in the flow distribution over the network is constrained by potentials so that the difference of potentials at the head and the tail of an edge is expressed as a nonlinear function of the edge flow. We consider networks with nodes divided into three categories: sources that inject flows into the network for a certain cost, terminals which buy the flow at a fixed price and internal customers each withdrawing an uncertain amount of flow, which has a priority and thus it is not priced. Our aim is to operate the network such that the profit, i.e. amount of flow sold to terminals minus cost of injection, is maximized, while maintaining the potentials within prescribed bounds. We also require that the operating point is robust with respect to the uncertainty of customers withdrawals. In this setting we prove that potentials are monotonic functions of the withdrawals. This observation enables us to replace in the maximum profit optimization infinitely many nodal constraints, each representing a particular value of withdrawal uncertainty, by only two constraints representing the cases where all nodes with uncertainty consume their minimum and maximum amounts respectively. We illustrate this general result on example of the natural gas transmission network. In this enabling example gas withdrawals by consumers are assumed uncertain, the potentials are gas pressures squared, the potential drop functions are bilinear in the flow and its intensity with an added tunable factor representing compression.
The main objective of this paper is to explore the precise relationship between the Bethe free energy (or entropy) and the Shannon conditional entropy of graphical error correcting codes. The main result shows that the Bethe free energy associated wi th a low-density parity-check code used over a binary symmetric channel in a large noise regime is, with high probability, asymptotically exact as the block length grows. To arrive at this result we develop new techniques for rather general graphical models based on the loop sum as a starting point and the polymer expansion from statistical mechanics. The true free energy is computed as a series expansion containing the Bethe free energy as its zero-th order term plus a series of corrections. It is easily seen that convergence criteria for such expansions are satisfied for general high-temperature models. We apply these general results to ensembles of low-density generator-matrix and parity-check codes. While the application to generator-matrix codes follows standard high temperature methods, the case of parity-check codes requires non-trivial new ideas because the hard constraints correspond to a zero-temperature regime. Nevertheless one can combine the polymer expansion with expander and counting arguments to show that the difference between the true and Bethe free energies vanishes with high probability in the large block
We investigate an encoding scheme for lossy compression of a binary symmetric source based on simple spatially coupled Low-Density Generator-Matrix codes. The degree of the check nodes is regular and the one of code-bits is Poisson distributed with a n average depending on the compression rate. The performance of a low complexity Belief Propagation Guided Decimation algorithm is excellent. The algorithmic rate-distortion curve approaches the optimal curve of the ensemble as the width of the coupling window grows. Moreover, as the check degree grows both curves approach the ultimate Shannon rate-distortion limit. The Belief Propagation Guided Decimation encoder is based on the posterior measure of a binary symmetric test-channel. This measure can be interpreted as a random Gibbs measure at a temperature directly related to the noise level of the test-channel. We investigate the links between the algorithmic performance of the Belief Propagation Guided Decimation encoder and the phase diagram of this Gibbs measure. The phase diagram is investigated thanks to the cavity method of spin glass theory which predicts a number of phase transition thresholds. In particular the dynamical and condensation phase transition temperatures (equivalently test-channel noise thresholds) are computed. We observe that: (i) the dynamical temperature of the spatially coupled construction saturates towards the condensation temperature; (ii) for large degrees the condensation temperature approaches the temperature (i.e. noise level) related to the information theoretic Shannon test-channel noise parameter of rate-distortion theory. This provides heuristic insight into the excellent performance of the Belief Propagation Guided Decimation algorithm. The paper contains an introduction to the cavity method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا