ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we apply a method identified by Puerari & Dottori (1997) to find the corotation radii (CR) in spiral galaxies. We apply our method to 57 galaxies, 17 of which have already have their CR locations determined using other methods. The met hod we adopted entails taking Fourier transforms along radial cuts in the u, g, r, i, and z wavebands and comparing the phase angles as a function of radius between them. The radius at which the phase angles cross indicates the location of the corotation radius. We then calculated the relative bar pattern speed, $mathcal{R}$, and classified the bar as fast, where $mathcal{R} < 1.4$, slow, where $mathcal{R} geq 1.4$, or intermediate, where the errors on $mathcal{R}$ are consistent with the bar being slow or fast. For the 17 galaxies that had their CR locations previously measured, we found that our results were consistent with the values of $mathcal{R}$ obtained by the computer simulations of Rautiainen, Salo & Laurikainen (2008). For the larger sample, our results indicate that 34 out of 57 galaxies (~60%) have fast bars. We discuss these results in the context of its implications for dark matter concentrations in disk galaxies. We also discuss these results in the context of different models for spiral structure in disk galaxies.
We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this corr elation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6-$mu$m imaging data and observed H$alpha$ rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxys baryon fraction and dark matter halo profile. Finally we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا