ترغب بنشر مسار تعليمي؟ اضغط هنا

For the first time in history, humans have reached the point where it is possible to construct a revolutionary space-based observatory that has the capability to find dozens of Earth-like worlds, and possibly some with signs of life. This same telesc ope, designed as a long-lived facility, would also produce transformational scientific advances in every area of astronomy and astrophysics from black hole physics to galaxy formation, from star and planet formation to the origins of the Solar System. The Association of Universities for Research in Astronomy (AURA) commissioned a study on a next-generation UVOIR space observatory with the highest possible scientific impact in the era following JWST. This community-based study focuses on the future space-based options for UV and optical astronomy that significantly advance our understanding of the origin and evolution of the cosmos and the life within it. The committee concludes that a space telescope equipped with a 12-meter class primary mirror can find and characterize dozens of Earth-like planets and make fundamental advances across nearly all fields of astrophysics. The concept is called the High Definition Space Telescope (HDST). The telescope would be located at the Sun-Earth L2 point and would cover a spectral range that, at a minimum, runs from 0.1 to 2 microns. Unlike JWST, HDST will not need to operate at cryogenic temperatures. HDST can be made to be serviceable on orbit but does not require servicing to complete its primary scientific objectives. We present the scientific and technical requirements for HDST and show that it could allow us to determine whether or not life is common outside the Solar System. We do not propose a specific design for such a telescope, but show that designing, building and funding such a facility is feasible beginning in the next decade - if the necessary strategic investments in technology begin now.
The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in deta il in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of CDM. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, twenty CLASH clusters are solely X-ray selected. The X-ray selected clusters are massive (kT > 5 keV; 5 - 30 x 10^14 M_solar) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (Einstein radii > 35 arcsec at z_source = 2) to further quantify the lensing bias on concentration, to yield high resolution dark matter maps, and to optimize the likelihood of finding highly magnified high-redshift (z > 7) galaxies. The high magnification, in some cases, provides angular resolutions unobtainable with any current UVOIR facility and can yield z > 7 candidates bright enough for spectroscopic follow-up. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (sigma_phz < 0.02(1+z)) photometric redshifts for dozens of newly discovered multiply-lensed images per cluster. Observations of each cluster are spread over 8 epochs to enable a search, primarily in the parallel fields, for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of such supernovae in an epoch when the universe is matter dominated.
140 - M. Postman , W. Traub , J. Krist 2009
The Advanced Technology Large Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation UV-Optical-Near Infrared space telescope with an aperture size of 8 to 16 meters. ATLAST, using an internal coronagraph or an externa l occulter, can characterize the atmosphere and surface of an Earth-sized exoplanet in the Habitable Zone of long-lived stars at distances up to ~45 pc, including its rotation rate, climate, and habitability. ATLAST will also allow us to glean information on the nature of the dominant surface features, changes in cloud cover and climate, and, potentially, seasonal variations in surface vegetation. ATLAST will be able to visit up to 200 stars in 5 years, at least three times each, depending on the technique used for starlight suppression and the telescope aperture. More frequent visits can be made for interesting systems.
The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most c hallenging observations to answer some of our most compelling questions, including Is there life elsewhere in the Galaxy? We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary scientific progress they would enable, and describes the most important technology development items. These are the mirrors, the detectors, and the high-contrast imaging technologies, whether internal to the observatory, or using an external occulter. Experience with JWST has shown that determined competitors, motivated by the development contracts and flight opportunities of the new observatory, are capable of achieving huge advances in technical and operational performance while keeping construction costs on the same scale as prior great observatories.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا