ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the impact of one-loop radiative corrections in a non-supersymmetric model of hybrid inflation with chaotic (polynomial-like) potential, $V_0 + lambda_p phi^p$. These corrections can arise from the possible couplings of inflaton with other f ields which may play active role in the reheating process. The tree-level predictions of these models are shown to lie outside of the Plancks latest bounds on the scalar spectral index $n_s$ and the tensor to scalar ratio $r$. However, the radiatively corrected version of these models, $ V_0 + lambda_p phi^p + A phi^4 ln phi$, is fully consistent with the Plancks data. More specifically, fermionic radiative correction ($A<0$) reduces the tensor to scalar ratio significantly and a red-tilted spectral index $n_s<1$, consistent with Plancks data, is obtained even for sub-Planckian field-values.
A scheme of simplified smooth hybrid inflation is realized in the framework of supersymmetric $SU(5)$. The smooth model of hybrid inflation provides a natural solution to the monopole problem that appears in the breaking of $SU(5)$ gauge symmetry. Th e supergravity corrections with nonminimal Kahler potential are shown to play important role in realizing inflation with a red-tilted scalar spectral index $n_s <1$, within Plancks latest bounds. As compared to shifted model of hybrid inflation, relatively large values of the tensor-to-scalar ratio $r lesssim 0.01$ are achieved here, with nonminimal couplings $-0.05 lesssim kappa_S lesssim 0.01$ and $-1 lesssim kappa_{SS} lesssim 1$ and the gauge symmetry-breaking scale $M simeq (2.0 - 16.7) times 10^{16}$ GeV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا