ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the real space profile of spin polarons in the quasi two-dimensional frustrated dimer spin system SrCu2(BO3)2 doped with 0.16% of Zn. The 11B nuclear magnetic resonance spectrum exhibits 15 additional boron sites near non-magnetic Zn imp urities. With the help of exact diagonalizations of finite clusters, we have deduced from the boron spectrum the distribution of local magnetizations at the Cu sites with fine spatial resolution, providing direct evidence for an extended spin polaron. The results are confronted with those of other experiments performed on doped and undoped samples of SrCu2(BO3)2.
We report nuclear magnetic resonance (NMR) studies in the antiferromagnetic state of the quasi-two-dimensional (CuBr)LaNb2O7. The NMR spectra at zero magnetic field and 4.2 K indicate a unique Cu and Br sites with an internal field of 5.7 T (at Cu) a nd 16.4 T (at Br), confirming a magnetic order. For the large internal field at the Br sites to be compatible with the collinear antiferromagnetic order observed by neutron diffraction experiments (N. Oba et al., J. Phys. Soc. Jpn. 75, (2006) 113601), the Br atoms must move significantly off the center of the square of the Cu sublattice so that the Br nuclei couple predominantly to two parallel Cu moments. While invalidating the frustrated J1-J2 model defined on a C4-symmetric square lattice, our results are compatible with the structural model proposed for (CuCl)LaNb2O7 by Yoshida et al. (J. Phys. Soc. Jpn. 76 (2007) 104703).
We report magnetization, nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and transmission electron microscopy (TEM) studies on the quasi-two-dimensional spin-gap system (CuCl)LaNb2O7, a possible candidate for the J1-J2 model on a square lattice. A sharp single NQR line is observed at the Cu and Cl sites, indicating that both Cu and Cl atoms occupy a unique site. However, the electric field gradient tensors at the Cu, Cl, and La sites do not have axial symmetry. This is incompatible with the reported crystal structure. Thus the J1-J2 model has to be modified. We propose alternative two-dimensional dimer models based on the NMR, NQR, and TEM results. The value of the hyperfine coupling constant at the Cu sites indicates that the spin density is mainly on the d(3z2-r2) orbital (z parallel c). At 1.5 K, Cu- and Nb-NMR signals disappear above the critical field Bc1 = 10.3 T determined from the onset of the magnetization, indicating a field-induced magnetic phase transition at Bc1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا