ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of intracluster light and of the extended halos around brightest cluster galaxies is closely related to morphological transformation, tidal stripping, and disruption of galaxies in clusters. We analyze Ks- and V-band surface photometry as well as deep long-slit spectra, and establish a link between the structures in the light distribution, the absorption line kinematics, and the LOS velocity distributions of nearby galaxies and planetary nebulae (PNs). The central galaxy NGC 3311 is surrounded by an extended symmetric outer halo with n=10 and an additional, off-centered envelope ~ 50 to the North-East. Its luminosity L_V= 1.2x10^{10} +/- 6.0 x 10^8 L_sun corresponds to ~50 % of the luminosity of the symmetric halo in the same region. Based on measured PN velocities, at least part of the off-centered envelope consists of high-velocity accreted stars. We have also discovered two tidal streams in the cluster center, emerging from the dwarf galaxy HCC 026 and from the S0 galaxy HCC 007. The HCC 026 stream is redshifted by ~1200 km/s with respect to NGC 3311, similarly as HCC 026 itself, a fraction of PNs in the off-centered envelope, and several other dwarf galaxies nearby. The stars in one of the HCC 026 tails are known to be consistent with the low-metallicity population of HCC 026, and our photometry shows that this galaxy is already mostly dissolved in the tidal field. The tidal stream around HCC 007 extends over at least 110 kpc. It is fairly thick and is brighter on the side of the asymmetric outer halo of NGC 3311, which it may join. Its luminosity is several 10^9 L_sun, similar to the luminosity of the stripped-down galaxy HCC 007. The redshift of the stream is determined from a few PN velocities and is similar to that for HCC 007 and HCC 026.
78 - Magda Arnaboldi 2010
Diffuse intracluster light (ICL) has now been observed in nearby and in intermediate redshift clusters. Individual intracluster stars have been detected in the Virgo and Coma clusters and the first color-magnitude diagram and velocity measurements ha ve been obtained. Recent studies show that the ICL contains of the order of 10% and perhaps up to 30% of the stellar mass in the cluster, but in the cores of some dense and rich clusters like Coma, the local ICL fraction can be high as 40%-50%. What can we learn from the ICL about the formation of galaxy clusters and the evolution of cluster galaxies? How and when did the ICL form? What is the connection to the central brightest cluster galaxy? Cosmological N-body and hydrodynamical simulations are beginning to make predictions for the kinematics and origin of the ICL. The ICL traces the evolution of baryonic substructures in dense environments and can thus be used to constrain some aspects of cosmological simulations that are most uncertain, such as the modeling of star formation and the mass distribution of the baryonic component in galaxies.
The intracluster light (ICL) is a faint diffuse stellar component in clusters made of stars not bound to individual galaxies. We have carried out a large scale study of this component in the nearby Virgo cluster. The diffuse light is traced using pla netary nebulae (PNe). The PNe are detected in the on-band image due to their strong emission in the [OIII] 5007 line, but disappear in the off-band image. The contribution of Ly-alpha emitters at z=3.14 are corrected statistically using blank field surveys. We have surveyed a total area of 3.3 square degrees in the Virgo cluster with eleven fields located at different radial distances. Those fields located at smaller radii than 80 arcmin from the cluster center contain most of the detected diffuse light. In this central region of the cluster, the ICL has a surface brightness in the range 28.8 - 30 mag per sqarsec in the B band, it is not uniformly distributed, and represents about 7% of the total galaxy light in this area. At distances larger than 80 arcmin the ICL is confined to single fields and individual sub-structures, e.g. in the Virgo sub-clump B, the M60/M59 group. For several fields at 2 and 3 degrees from the Virgo cluster center we set only upper limits. These results indicate that the ICL is not homogeneously distributed in the Virgo core, and it is concentrated in the high density regions of the Virgo cluster, e.g. the cluster core and other sub-structures. Outside these regions, the ICL is confined within areas of 100 kpc in size, where tidal effects may be at work. These observational results link the formation of the ICL with the formation history of the most luminous cluster galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا